K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

Ta có:

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Do \(n\left(n-1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vì n là số nguyên nên n có các dạng \(5k;5k+1;5k+2;5k+3;5k+4\)

Với \(n=5k\Rightarrow n^5-n=5k\left(25k^2-1\right)\left(25k^2+1\right)⋮5\)

Với \(n=5k+1\) thì \(n-1=5k+1-1=5k\Rightarrow n^5-n⋮5\)

Với \(n=5k+2\) thì \(n^2+1=\left(5k+2\right)^2+1=25k^2+20k+5⋮5\Rightarrow n^5-n⋮5\)

Với \(n=5k+3\) thì \(n^2+1=\left(5k+3\right)^2+1=25k^2+30k+10⋮5\Rightarrow n^5-n⋮5\)

Với \(n=5k+4\) thì \(n+1=5k+5⋮5\Rightarrow n^5-n⋮5\)

Mà \(\left(2;5\right)=1\Rightarrowđpcm\)

12 tháng 7 2019

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right).\)

(n-1), n  là 2 số nguyên liên tiếp nên \(n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)hay \(n^5-n⋮2\)(1)

Mặt khác \(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Nhận thấy \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)(tích của 5 số nguyên liên tiếp); \(5n\left(n-1\right)\left(n+1\right)⋮5\)

Suy ra: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)hay \(n^5-n⋮5\)(2)

Từ (1) và (2) kết hợp với \(\left(2;5\right)=1\)Suy ra \(n^5-n⋮10\)

Cách này thực chất cũng gần giống bài của Cool Kid, nhưng lập luận để chia hết cho 5 thì hơi khác

P/S : Đây là ACC phụ nên đừng ti ck cho câu trả lời này :))

15 tháng 9 2017

\(7^{n+4}-7^n\)

\(\Rightarrow7^n\cdot7^4-7^n\)

\(\Rightarrow7^n\cdot\left(7^4-1\right)\)

\(\Rightarrow7^n\cdot\left(2401-1\right)\)

\(\Rightarrow7^n\cdot2400\)

\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)

\(3^{n+2}+3^n\)

\(\Rightarrow3^n\cdot3^2+3^n\)

\(\Rightarrow3^n\cdot\left(3^2+1\right)\)

\(\Rightarrow3^n\cdot\left(9+1\right)\)

\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)

4 tháng 4 2017

B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)

=> B=(n-2)(n-1).n(n+1)(n+2)

Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0

=> Số tận cùng của B là 0

=> B chia hết cho 10 với mọi n thuộc Z

4 tháng 4 2017

cảm ơn bạn nhiều

27 tháng 9 2018

  n(2n-3)-2n(n+1) 

=2n^2-3n-2n^2-2n 
=-5n 
-5n chia hết cho 5 vs mọi số nguyên n vì -5 chia hết cho 5 
vậy n(2n-3)-2n(n+1) chia hết cho 5

k mk nhak

Thanks <3

20 tháng 9 2016

\(A=n^3-n\\ =n\left(n^2-1\right)\\ =n\left(n-1\right)\left(n+1\right)\)

n; n-1; n+1 là 3 số tự nhiên liên tiếp (1)

=> 1 trong 3 số trên chia hết cho 2

=> A chia hết cho 2 (2)

Từ (1) => một trong 3 số trên chia hết cho 3

=> A chia hết cho 3 (3)

2 và 3 là 2 số nguyên tố cùng nhau (4)

Từ (2); (3); (4) => A chia hết cho 6 (đpcm)

20 tháng 9 2016

n- n 

= n(n2 - 1) = n(n2 - 12)

= n(n - 1)(n + 1)

Có n - 1 ; n ; n + 1 là 3 số nguyên liên tiếp (n thuộc Z)

=> trong 3 số đó luôn có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3

=> Tích của chúng chia hết cho 6

=> n(n - 1)(n + 1) chia hết cho 6

=> n3 - n chia hết cho 6 (Đpcm)

1 tháng 5 2018

a,

n-n=n(n-1)=n(n2  +1)(n+1)(n-1)

vi n,n+1,n-1 la 3 so tu nhien lien tiep nen h cau chung chia het cho 3 va 2

mat khac (2;3)=1 nen S= n(n+1)(n-1)(n+1)chia het cho 6

xet n=5k  

ma(5;6)=1nen Schia het cho 30

tuong tu voi n=5k+1 thi n-1 chia het cho 5

voi n=5k+2 thi n+1 chia het cho 5

voi n=5k+3 thi n+1 chia het cho 5

voi n=5k+4 thi n+1 chia het cho 5

vay voi moi n nguyen thi n-n chia het cho 30

23 tháng 6 2019

a) Ta có : A = 1028 + 8 

                   = 100...0 + 8 (28 chữ số 0)

                   = 100...008 (27 chữ số 0)

Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008 

lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8

=> 1028 + 8 \(⋮\)8 (1)

Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)

=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0) 

=> 1028 + 8 \(⋮\)9(2)

Từ (1) và (2) ta có :

ƯCLN(8,9) = 1

=> 1028 + 8 \(⋮\)BCNN(8,9) 

=> 1028 + 8 \(⋮\)72

Ta có :

\(10^{28}+8=100...008\)(27 chữ số 0 )

Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)

Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)

25 tháng 11 2016

k 2 k kieu gi

a+4b chia het cho 13

=>a+4b=13k (k nguyen)

a=13k-4b

10.a=130k-40b

10.a+b=130k-39b=13(10k-3b)  chia het cho 13

5n+1 chia het cho 7=> 5n+1=7k

n=7z+4 

7 tháng 9 2017

đề sai hoàn toàn : lấy VD nhé :

n=1

=> \(2^{2^1}+10=4+10=14⋮̸13\)

31 tháng 5 2016

Để n+ 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6

Ta có \(n^4+2n^3-n^2-2n=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4

Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6

Vậy biểu thức chia hết cho 24

22 tháng 3 2023

Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6

 

Ta có 

4

+

2

3

2

2

=

2

(

2

1

)

+

2

(

2

1

)

4

 +2n 

3

 −n 

2

 −2n=n 

2

 (n 

2

 −1)+2n(n 

2

 −1)

 

=

(

2

1

)

(

2

+

2

)

=

(

1

)

(

+

1

)

(

+

2

)

=(n 

2

 −1)(n 

2

 +2)=(n−1)n(n+1)(n+2)

 

Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4

 

Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6

 

Vậy biểu thức chia hết cho 24

 

 Đúng ko nek