K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

a) Ta có : A = 1028 + 8 

                   = 100...0 + 8 (28 chữ số 0)

                   = 100...008 (27 chữ số 0)

Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008 

lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8

=> 1028 + 8 \(⋮\)8 (1)

Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)

=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0) 

=> 1028 + 8 \(⋮\)9(2)

Từ (1) và (2) ta có :

ƯCLN(8,9) = 1

=> 1028 + 8 \(⋮\)BCNN(8,9) 

=> 1028 + 8 \(⋮\)72

Ta có :

\(10^{28}+8=100...008\)(27 chữ số 0 )

Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)

Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)

6 tháng 5 2018

\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)

\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)

\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)

6 tháng 5 2018

10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n

=9.(111....1(n chữ số 1)+2n)

xét --------------------------------=11...1-n+3n

dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n

=>11....1-n chia hết cho 3

=>11.....1-n+3 chia hết cho 3

=>10n+18n-1 chia hết cho 27

1 tháng 5 2018

a,

n-n=n(n-1)=n(n2  +1)(n+1)(n-1)

vi n,n+1,n-1 la 3 so tu nhien lien tiep nen h cau chung chia het cho 3 va 2

mat khac (2;3)=1 nen S= n(n+1)(n-1)(n+1)chia het cho 6

xet n=5k  

ma(5;6)=1nen Schia het cho 30

tuong tu voi n=5k+1 thi n-1 chia het cho 5

voi n=5k+2 thi n+1 chia het cho 5

voi n=5k+3 thi n+1 chia het cho 5

voi n=5k+4 thi n+1 chia het cho 5

vay voi moi n nguyen thi n-n chia het cho 30

Ta có: 27n - 27 chia hết cho 27 (1) 
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2) 
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27. 
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm) 
Hok tốt!!!

19 tháng 7 2017

b/n bang 2      c/n bang 2

22 tháng 10 2019

   1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10  chia hết cho 125 = 102510 chia hết cho 125 

Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b

   1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9

   2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24

   Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc  

4 tháng 7 2021

Có : 

10n + 18n -1  =   10n -1+ 18n

= 100...0  ( n chữ số 0 )   - 1  + 18n 

99...9 ( n chữ số 9 ) + 18n 

= 9 [ 11...1    ( n chữ số 1 ) +  2n ] 

Dễ thấy 11..1 ( n chữ số 1 ) có tổng các các  chữ số là n 

=> 11..1 ( n chữ số 1 ) + 2n = n+ 2n = 3n \(⋮\)

vì 11..1 ( n chữ số 1 )  + 2n  \(⋮\)

=> 9 [ 11..1  ( n chữ số 1 ) + 2n ] \(⋮\) 27  hay 10n + 18n -1 \(⋮\) 27 ( đpcm )

Những lần mình ghi n chữ số 1 hoặc 9 hoăc 10 thì bạn có thể ngoắc  ở dưới số đó luôn vì trên này không viết được như thế !

14 tháng 12 2019

Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo link trên.

20 tháng 7 2015

chính xác 100/100

 

d) \(10^n+72n-1\)\(=100...0-1+72n\)

=\(999...9-9n+81n\)

     n chữ số 9

=\(9.\left(111...1-n\right)+81n\)

VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9

mà 81n chia hết 9 => 10n + 72n -1 chia hết 9

b) \(10^n+18n-1\)

<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)

          n

<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)

             n

<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)

               n

<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)

<=> \(9.9k+27n\)chia hết \(27\)

<=> \(81k+27n\)chia hết \(27\)