K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

a,

n-n=n(n-1)=n(n2  +1)(n+1)(n-1)

vi n,n+1,n-1 la 3 so tu nhien lien tiep nen h cau chung chia het cho 3 va 2

mat khac (2;3)=1 nen S= n(n+1)(n-1)(n+1)chia het cho 6

xet n=5k  

ma(5;6)=1nen Schia het cho 30

tuong tu voi n=5k+1 thi n-1 chia het cho 5

voi n=5k+2 thi n+1 chia het cho 5

voi n=5k+3 thi n+1 chia het cho 5

voi n=5k+4 thi n+1 chia het cho 5

vay voi moi n nguyen thi n-n chia het cho 30

23 tháng 6 2019

a) Ta có : A = 1028 + 8 

                   = 100...0 + 8 (28 chữ số 0)

                   = 100...008 (27 chữ số 0)

Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008 

lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8

=> 1028 + 8 \(⋮\)8 (1)

Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)

=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0) 

=> 1028 + 8 \(⋮\)9(2)

Từ (1) và (2) ta có :

ƯCLN(8,9) = 1

=> 1028 + 8 \(⋮\)BCNN(8,9) 

=> 1028 + 8 \(⋮\)72

Ta có :

\(10^{28}+8=100...008\)(27 chữ số 0 )

Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)

Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)

5 tháng 7 2017

\(A=3.\left(3^4\right)^{10}+2\)

Do 34 có tận cùng là 1 nên A có tận cùng là 5 nên chia hết cho 5

\(B=2.\left(2^4\right)^n+3\)

Do 24 có tận chùng là 6 nên (24)n có tận cùng là 6 => 2.(24)n có tận cùng là 2 => B có tận cùng là 5 nên chia hết cho 5

Trường hợp còn lại là tương tự

4 tháng 2 2018

a, n+5 chia hết cho n-1 => n-1+6 chia hết cho n-1 => 6 chia hết cho n-1 hay n-1 thuộc Ư(6)

=> n-1={1,-1,2,-2,3,-3,6,-6} 

=>n={2,0,3,-1,4,-2,7,-5}

Các TH khác tương tự nk

4 tháng 2 2018

b, 2n-4=2(n+2)-8

c, 6n+4=3(2n+1)+1

20 tháng 10 2016

Giúp với

29 tháng 10 2016

Câu a. Đề​ là cm chia hết cho 2. Tin mình đi có thể sách bạn bị con muỗi đậu vào thêm số 1. Cm nếu n chẵn hiển nhiên. Nếu n lẻ thì (n+13) chẵn chia hét cho =đp cm

​b)7^4=49^2 tận cùng là 1 =>7^4)^n tân cùng 1 =>7^(4n)-1 tân cùng là 0 vậy chia hết cho 5

12 tháng 7 2017

xét n(n+1)(4n+1)

Có (nn+n1)(4n+1)

(2n+n)(4n+1)=3n(4n+1)

Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3

xét3n(4n+1)

có 3n*4n+3n

=>n(3+3)4n

=>n6*4n=24n chia hết cho 2

12 tháng 7 2017

mình làm ko biết đúng không 

nhung chac la se dung

25 tháng 11 2016

k 2 k kieu gi

a+4b chia het cho 13

=>a+4b=13k (k nguyen)

a=13k-4b

10.a=130k-40b

10.a+b=130k-39b=13(10k-3b)  chia het cho 13

5n+1 chia het cho 7=> 5n+1=7k

n=7z+4 

6 tháng 5 2018

\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)

\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)

\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)

6 tháng 5 2018

10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n

=9.(111....1(n chữ số 1)+2n)

xét --------------------------------=11...1-n+3n

dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n

=>11....1-n chia hết cho 3

=>11.....1-n+3 chia hết cho 3

=>10n+18n-1 chia hết cho 27