Tìm GTNN của các biểu thức:
\(B=\sqrt{2x^2-4x+10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)
\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)
\(\Rightarrow\) \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)
Vậy GTNN của biểu thức là 4
\(B=\sqrt{2\left(x^2-2x+1\right)+8}=\sqrt{2\left(x-1\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)
\(\Rightarrow B_{min}=2\sqrt{2}\) khi \(x=1\)
\(\sqrt{2}A=\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\)
\(\sqrt{2}A=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\)
Áp dụng BĐT \(\sqrt{A^2+B^2}+\sqrt{C^2+D^2}\ge\sqrt{\left(A+C\right)^2+\left(B+D\right)^2}\)
=>\(\sqrt{2}A\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\)
=>\(A\ge\sqrt{13}\)
Dấu bằng xảy ra<=> \(\frac{2x-1}{3}=\frac{2x-2}{2}\)
<=>.........
Ta có:2x2-4x+10=2x2-4x+2+8
=2(x2-2x+1)+8=2(x-1)2+8.Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\ge0\)
\(\Rightarrow2\left(x-1\right)^2+8\ge8\)\(\Rightarrow\)GTNN của A=8 đạt được khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
Ta có : 2x2 - 4x + 10
= 2(x2 - 2x + 5)
= 2(x2 - 2x + 1 + 4)
= 2[(x - 1)2 + 4 ]
= 2(x - 1)2 + 4
Mà 2(x - 1)2 \(\ge0\forall x\)
Nên : 2(x - 1)2 + 4 \(\ge4\forall x\)
Vậy Amin = 4 , dấu "=" xảy ra khi và chỉ khi x = 1
Đặt \(A=\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}\)
\(A=\left|x+1\right|+\left|x-2\right|\)
\(A=\left|x+1\right|+\left|2-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(A=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=\left|3\right|=3\)
Đẳng thức xảy ra khi ab ≥ 0
=> ( x + 1 )( 2 - x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\-x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}}\Leftrightarrow-1\le x\le2\)
2. \(\hept{\begin{cases}x+1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\-x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge2\end{cases}}\)( loại )
=> MinA = 3 <=> \(-1\le x\le2\)
Ta có ;
y =\(2+\sqrt{\left(\sqrt{2}x-\sqrt{2}\right)^2+3}\)
Mà \(\left(\sqrt{2}x-\sqrt{2}\right)^{2^{ }^{ }}+3\ge3\)
\(\Rightarrow\sqrt{\left(\sqrt{2}x-\sqrt{2}\right)^2+3}\ge\sqrt{3}\)
\(\Rightarrow2+\sqrt{\left(\sqrt{2}x-\sqrt{2}\right)^2+3}\ge2+\sqrt{3}\)
\(\Rightarrow y\ge2+\sqrt{3}\)
Vậy gía trị nhỏ nhất của biểu thức là 2+\(\sqrt{3}\).Dấu "=" xảy ra khi x=1
\(B=\sqrt{2x^2-4x+10}=\sqrt{2\left(x^2-2x+1\right)+8}\)
\(B=\sqrt{2\left(x-1\right)^2+8}\ge8\)
Vậy GTNN của B là 8 \(\Leftrightarrow x=1\)
\(B=\sqrt{2x^2-4x+10}=\sqrt{\left(2x^2-4x+2\right)+8}=\sqrt{2\left(x^2-2x+1\right)+8}=\sqrt{2\left(x-1\right)^2+8}\)
Ta có \(2\left(x-1\right)^2\ge0\)
để \(2\left(x-1\right)^2\)nhỏ nhất thì \(x=1\)
Vậy tại \(x=1\)thì \(GTNN_B=\sqrt{2\left(1-1\right)^2+8}=\sqrt{0+8}=\sqrt{8}\)