Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)
\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)
\(\Rightarrow\) \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)
Vậy GTNN của biểu thức là 4
Ta có ;
y =\(2+\sqrt{\left(\sqrt{2}x-\sqrt{2}\right)^2+3}\)
Mà \(\left(\sqrt{2}x-\sqrt{2}\right)^{2^{ }^{ }}+3\ge3\)
\(\Rightarrow\sqrt{\left(\sqrt{2}x-\sqrt{2}\right)^2+3}\ge\sqrt{3}\)
\(\Rightarrow2+\sqrt{\left(\sqrt{2}x-\sqrt{2}\right)^2+3}\ge2+\sqrt{3}\)
\(\Rightarrow y\ge2+\sqrt{3}\)
Vậy gía trị nhỏ nhất của biểu thức là 2+\(\sqrt{3}\).Dấu "=" xảy ra khi x=1
Ta có: \(A=2x+\sqrt{4x^2-4x+1}\)
\(=2x+\sqrt{\left(2x-1\right)^2}=2x+\left|2x-1\right|\)
TH1: \(x\ge\frac{1}{2}\). Khi đó \(A=2x+2x-1=4x-1\ge4.\frac{1}{2}-1=\frac{7}{2}\)
TH2: \(x< \frac{1}{2}\). Khi đó \(A=2x+1-2x=1\)
Vậy GTNN của A là 1 với mọi \(x< \frac{1}{2}\)
Chúc em học tập tốt :)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
\(\sqrt{2}A=\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\)
\(\sqrt{2}A=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\)
Áp dụng BĐT \(\sqrt{A^2+B^2}+\sqrt{C^2+D^2}\ge\sqrt{\left(A+C\right)^2+\left(B+D\right)^2}\)
=>\(\sqrt{2}A\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\)
=>\(A\ge\sqrt{13}\)
Dấu bằng xảy ra<=> \(\frac{2x-1}{3}=\frac{2x-2}{2}\)
<=>.........