Cho tam giác ABC có trung tuyến BD và CE cắt nhau tại G, cho biết BC=10, BD=9, CE=12. Tính diện tích ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi G là giao điểm của BD và CE
ta có
BG=2/3 BD suy ra BG=2/3 . 9= 6 cm
CG=2/3 CE suy ra CG=2/3 . 12= 8 cm
xét tam giác CGB vuông tại G ta có
CB^2= CG^2 + BG^2 =8^2 + 6^2 =64 + 36
CB^2=100 suy ra CB =10 cm
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
Sai đề!
+Nếu làm theo tính diện tích tam giác ABC:
Hình: Tự vẽ
G là trọng tâm tam giác ABC:
\(\Rightarrow BG=\frac{2}{3}BD=6;CG=\frac{2}{3}CE=8.\)
Ta có: 3 giác BGC có \(BG^2+CG^2=6^2+8^2=10^2=BC^2\)=> 3 giác BGC vuông tại G
=> Diện tích BDC=1/2BD.GC=36
=> SABC=2SBCD=72 (chung chiều cao, đáy AC=2CD)