Chứng tỏ rằng với n thuộc N thì tổng hiệu sau chia hết cho 9 :
a) 10n - 1
b) 10n + 8
GIẢI GIÚP MK NHA, MK CẦN GẤP, THANK YOU NHÌU !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
n5 -n=n(n4 -1)=n(n2 +1)(n+1)(n-1)
vi n,n+1,n-1 la 3 so tu nhien lien tiep nen h cau chung chia het cho 3 va 2
mat khac (2;3)=1 nen S= n(n+1)(n-1)(n2 +1)chia het cho 6
xet n=5k
ma(5;6)=1nen Schia het cho 30
tuong tu voi n=5k+1 thi n-1 chia het cho 5
voi n=5k+2 thi n2 +1 chia het cho 5
voi n=5k+3 thi n2 +1 chia het cho 5
voi n=5k+4 thi n+1 chia het cho 5
vay voi moi n nguyen thi n5 -n chia het cho 30
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
Vì 243 = 9 x 27 nên 243 chia hết cho 9 và 243a chia hết cho 9
Vì 657 = 9 x 27 nên 657 chia hết cho 9 và 657b chia hết cho 9
Theo tính chất chia hết cho một tổng.Suy ra 243a + 657b chia hết cho 9 với mọi a;b thuộc N
Gọi 4 số lẻ liên tiếp là: 2k+1; 2k+3; 2k+5; 2k+7 (\(k\in N\))
Xét tổng: 2k+1+2k+3+2k+5+2k+7
= (2k+2k+2k+2k)+(1+3+5+7)
=8k+16
Mà 8k chia hết cho 8
16 chia hết cho 8
=> tổng 4 số lẻ liên tiếp chia hết cho 8
gọi số đó là 2k+1
=>4 số lẻ liên tiếp là:2k+1+2k+3+2k+5+2k+7
= 8k+16
=8(k+2)chia hết cho 8
vậy ...........................
a) Ta có : A = 1028 + 8
= 100...0 + 8 (28 chữ số 0)
= 100...008 (27 chữ số 0)
Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008
lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8
=> 1028 + 8 \(⋮\)8 (1)
Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)
=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0)
=> 1028 + 8 \(⋮\)9(2)
Từ (1) và (2) ta có :
ƯCLN(8,9) = 1
=> 1028 + 8 \(⋮\)BCNN(8,9)
=> 1028 + 8 \(⋮\)72
Ta có :
\(10^{28}+8=100...008\)(27 chữ số 0 )
Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)
Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)
\(7^{n+4}-7^n\)
\(\Rightarrow7^n\cdot7^4-7^n\)
\(\Rightarrow7^n\cdot\left(7^4-1\right)\)
\(\Rightarrow7^n\cdot\left(2401-1\right)\)
\(\Rightarrow7^n\cdot2400\)
\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)
\(3^{n+2}+3^n\)
\(\Rightarrow3^n\cdot3^2+3^n\)
\(\Rightarrow3^n\cdot\left(3^2+1\right)\)
\(\Rightarrow3^n\cdot\left(9+1\right)\)
\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)
cho A = 10n+18n-1 chia hết cho 27
suy ra 10n+18n-1 chia hết cho 27
suy ra n=1
b) 10n+8=100..0+8=100...08 có tỏng các chữ số là 9 nên chia hết cho 9