cho tam giác abc cân tại a, ad là đường phân giác.trên tia đối của tia da lấy điểm e sao cho de=da.
a, cm d là trung điểm cạnh bc
b cm tam giác bae cân
c, gọi m là trung điểm cạnh ac,n là giao điểm của bc và em
cm bc=3nc
nhanh nhé nay mình thi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
AM = MC (M là trung điểm của của AC)
=> EM là trung tuyến của tam giác ACE (1)
DA = DE (gt)
=> CN là trung tuyến của tam giác ACE (2)
Từ (1) và (2) => N là trọng tâm của tam giác ACE
=> CN = \(\frac{2}{3}\) CD = \(\frac{2}{3}.\frac{1}{2}BC=\frac{1}{3}BC\) (D là trung điểm của BC => CD = BD = \(\frac{1}{2}BC\)
=> BC = 3CN
Chúc bạn học tốt
Mk chỉ làm câu c thôi nha:
Nối C với E ta có
Xét tam giác ACE ta có:
EM là đường trung tuyến [vì MA=MC(gt)]
CD là đường trung tuyến [vì DA=DE(gt)]
\(\Rightarrow\)ND=1/3DC(Mà DC=BD)
\(\Rightarrow\)ND=1/3.BC/2
\(\Rightarrow\)ND=BC/6
\(\Rightarrow\)BC=6.ND(Mà ND=1/3 DC)
\(\Rightarrow\)BC=6.NC/2
\(\Rightarrow\)BC=3NC(đpcm)
b) Xét ΔADB vuông tại D và ΔEDC vuông tại D có
DB=DC(cmt)
DA=DE(gt)
Do đó: ΔADB=ΔEDC(hai cạnh góc vuông)
Suy ra: AB=EC(Hai cạnh tương ứng)
mà AB=AC(ΔBAC cân tại A)
nên CA=CE
Xét ΔCAE có CA=CE(cmt)
nên ΔCAE cân tại C(Định nghĩa tam giác cân)
a) Xét ΔAME và ΔCMB có
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
⇒AE=BC(hai cạnh tương ứng)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)
mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔANF và ΔBNC có
AN=BN(N là trung điểm của AB)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
⇒AF=BC(hai cạnh tương ứng)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
mà AE//BC(cmt)
và AF,AE có điểm chung là A
nên F,A,E thẳng hàng(1)
Ta có: AE=BC(cmt)
mà AF=BC(cmt)
nên AE=AF(2)
Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)
ai đó cíu với