K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Bạn tự vẽ hình nhaleu

AM = MC (M là trung điểm của của AC)

=> EM là trung tuyến của tam giác ACE (1)

DA = DE (gt)

=> CN là trung tuyến của tam giác ACE (2)

Từ (1) và (2) => N là trọng tâm của tam giác ACE

=> CN = \(\frac{2}{3}\) CD = \(\frac{2}{3}.\frac{1}{2}BC=\frac{1}{3}BC\) (D là trung điểm của BC => CD = BD = \(\frac{1}{2}BC\)

=> BC = 3CN

Chúc bạn học tốtok

6 tháng 5 2016

Mk chỉ làm câu c thôi nha:

         Nối C với E ta có

Xét tam giác ACE ta có:

EM là đường trung tuyến [vì MA=MC(gt)]

CD là đường trung tuyến  [vì DA=DE(gt)]

\(\Rightarrow\)ND=1/3DC(Mà DC=BD)

 \(\Rightarrow\)ND=1/3.BC/2

\(\Rightarrow\)ND=BC/6

\(\Rightarrow\)BC=6.ND(Mà ND=1/3 DC)

\(\Rightarrow\)BC=6.NC/2

\(\Rightarrow\)BC=3NC(đpcm)

17 tháng 12 2016

Bài 1:

A B C E 50

a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)

mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)

nên từ (1) và (2) suy ra góc AEB = ABE

mà 2 góc này là 2 góc đáy

=> ΔABE là tam giác cân

b) Do góc ABE = EBC = 50:2 = 25 độ

nên góc ABE = AEB = 25 độ

Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )

=> 25 + 25 + BAE = 180

=> BAE = 130 độ.

Bài 2:

A B C D E

a) Vì ΔABC cân tại A nên góc ABC = ACB

mà góc ABC + ACB = 180 - BAC

=> góc ABC = 180 - BAC /2 (1)

Do AD = AE nên ΔADE cân tại A

được góc ADE = AED

mà góc ADE + AED = 180 - BAC

=> ADE = 180 - BAC/2 (2)

Từ (1) và (2) suy ra góc ABC = ADE

mà 2 góc này ở vị trí đồng vị => DE//BC

b) Ta có: AD + DB = AB

AE + EC = AC

mà AD = AE ( gt); AB = AC (theo câu a)

=> DB = EC

Xét ΔMBD và ΔMCE có:

DB = CE ( chứng minh trên )

Góc ABC = ACB ( theo câu a )

MB = MC ( suy từ gt)

=> ΔMBD = ΔMCE ( c.g.c )

c) Lại do ΔMBD = ΔMCE (theo câu b)

=> MD = ME (2 cạnh tương ứng)

Xét ΔAMD và ΔAME có:

AD = AE (gt)

AM chung

MD = ME ( cm trên )

=> ΔAMD = ΔAME ( c.c.c )

Chúc bạn học tốtNgân Phùngvui

 

17 tháng 12 2016

Sửa lại bài 3:

x A B C m 1

Giải:

Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)

Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)

\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)

\(\Rightarrow\widehat{A_1}=\widehat{C}\)

Mà 2 góc trên ở vị trí so le trong nên Am // BC

Vậy Am // BC

b) Xét ΔADB vuông tại D và ΔEDC vuông tại D có 

DB=DC(cmt)

DA=DE(gt)

Do đó: ΔADB=ΔEDC(hai cạnh góc vuông)

Suy ra: AB=EC(Hai cạnh tương ứng)

mà AB=AC(ΔBAC cân tại A)

nên CA=CE

Xét ΔCAE có CA=CE(cmt)

nên ΔCAE cân tại C(Định nghĩa tam giác cân)

27 tháng 6 2021

giúp mình làm với , cảm ơn nhiều :33

 

a) Xét ΔABDΔABD và ΔACEΔACE có:

AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)

ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)

BD=CEBD=CE (giả thiết)

⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)

⇒AD=AE⇒AD=AE (hai cạnh tương ứng)

⇒ΔADE⇒ΔADE cân đỉnh A

b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM

Xét ΔAMDΔAMD và ΔAMEΔAME có:

AD=AEAD=AE (cmt)

AMAM chung

DM=EMDM=EM (cmt)

⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)

⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)

⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)

Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^

Mà ˆAMD+ˆAME=180oAMD^+AME^=180o

⇒ˆAMD=ˆAME=180o2=90o⇒AMD^=AME^=180o2=90o

⇒AM⊥DE⇒AM⊥DE (đpcm)

c) Xét ΔΔ vuông ABHABH và ΔΔ vuông ACKACK có:

AB=ACAB=AC (gt)

ˆBAH=ˆCAKBAH^=CAK^ (do ΔABD=ΔACEΔABD=ΔACE)

⇒ΔABH=ΔACK⇒ΔABH=ΔACK (ch-gn)

⇒BH=CK⇒BH=CK (hai cạnh tương ứng) (đpcm)

CHÚC BẠN HỌC GIỎI NHÉ THEO DÕI CHÉO NHA?