Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
AM = MC (M là trung điểm của của AC)
=> EM là trung tuyến của tam giác ACE (1)
DA = DE (gt)
=> CN là trung tuyến của tam giác ACE (2)
Từ (1) và (2) => N là trọng tâm của tam giác ACE
=> CN = \(\frac{2}{3}\) CD = \(\frac{2}{3}.\frac{1}{2}BC=\frac{1}{3}BC\) (D là trung điểm của BC => CD = BD = \(\frac{1}{2}BC\)
=> BC = 3CN
Chúc bạn học tốt
Mk chỉ làm câu c thôi nha:
Nối C với E ta có
Xét tam giác ACE ta có:
EM là đường trung tuyến [vì MA=MC(gt)]
CD là đường trung tuyến [vì DA=DE(gt)]
\(\Rightarrow\)ND=1/3DC(Mà DC=BD)
\(\Rightarrow\)ND=1/3.BC/2
\(\Rightarrow\)ND=BC/6
\(\Rightarrow\)BC=6.ND(Mà ND=1/3 DC)
\(\Rightarrow\)BC=6.NC/2
\(\Rightarrow\)BC=3NC(đpcm)
Bài 1:
a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)
mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)
nên từ (1) và (2) suy ra góc AEB = ABE
mà 2 góc này là 2 góc đáy
=> ΔABE là tam giác cân
b) Do góc ABE = EBC = 50:2 = 25 độ
nên góc ABE = AEB = 25 độ
Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )
=> 25 + 25 + BAE = 180
=> BAE = 130 độ.
Bài 2:
a) Vì ΔABC cân tại A nên góc ABC = ACB
mà góc ABC + ACB = 180 - BAC
=> góc ABC = 180 - BAC /2 (1)
Do AD = AE nên ΔADE cân tại A
được góc ADE = AED
mà góc ADE + AED = 180 - BAC
=> ADE = 180 - BAC/2 (2)
Từ (1) và (2) suy ra góc ABC = ADE
mà 2 góc này ở vị trí đồng vị => DE//BC
b) Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE ( gt); AB = AC (theo câu a)
=> DB = EC
Xét ΔMBD và ΔMCE có:
DB = CE ( chứng minh trên )
Góc ABC = ACB ( theo câu a )
MB = MC ( suy từ gt)
=> ΔMBD = ΔMCE ( c.g.c )
c) Lại do ΔMBD = ΔMCE (theo câu b)
=> MD = ME (2 cạnh tương ứng)
Xét ΔAMD và ΔAME có:
AD = AE (gt)
AM chung
MD = ME ( cm trên )
=> ΔAMD = ΔAME ( c.c.c )
Chúc bạn học tốtNgân Phùng
Sửa lại bài 3:
Giải:
Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)
\(\Rightarrow\widehat{A_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí so le trong nên Am // BC
Vậy Am // BC
b) Xét ΔADB vuông tại D và ΔEDC vuông tại D có
DB=DC(cmt)
DA=DE(gt)
Do đó: ΔADB=ΔEDC(hai cạnh góc vuông)
Suy ra: AB=EC(Hai cạnh tương ứng)
mà AB=AC(ΔBAC cân tại A)
nên CA=CE
Xét ΔCAE có CA=CE(cmt)
nên ΔCAE cân tại C(Định nghĩa tam giác cân)
a) Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)
ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)
BD=CEBD=CE (giả thiết)
⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)
⇒AD=AE⇒AD=AE (hai cạnh tương ứng)
⇒ΔADE⇒ΔADE cân đỉnh A
b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM
Xét ΔAMDΔAMD và ΔAMEΔAME có:
AD=AEAD=AE (cmt)
AMAM chung
DM=EMDM=EM (cmt)
⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)
⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)
⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)
Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^
Mà ˆAMD+ˆAME=180oAMD^+AME^=180o
⇒ˆAMD=ˆAME=180o2=90o⇒AMD^=AME^=180o2=90o
⇒AM⊥DE⇒AM⊥DE (đpcm)
c) Xét ΔΔ vuông ABHABH và ΔΔ vuông ACKACK có:
AB=ACAB=AC (gt)
ˆBAH=ˆCAKBAH^=CAK^ (do ΔABD=ΔACEΔABD=ΔACE)
⇒ΔABH=ΔACK⇒ΔABH=ΔACK (ch-gn)
⇒BH=CK⇒BH=CK (hai cạnh tương ứng) (đpcm)
CHÚC BẠN HỌC GIỎI NHÉ THEO DÕI CHÉO NHA?
ai đó cíu với