Cho hai đường thẳng
\(d1:y=mx-2\left(m+2\right)vớim\ne0\)
\(d2:y=\left(2m-3\right)x+\left(m^2-1\right)vớim\ne\frac{3}{2}\)
CMR: với mọi gtri của m, hai đt d1 và d2 không trùng nhau
tìm các gtr m để d1//d2, d1 cắt d2, d1 vuông góc với d2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện để (d1) và (d2) trùng nhau là
\(\begin{cases}m=2m-3\left(1\right)\\-2m-4=m^2-1\left(2\right)\end{cases}\)
Giải (1) được m = -3
Giải (2) được \(m^2+2m+3=0\) vô nghiệm.
Vậy ........................................
a/ Hai đường thẳng // khi
\(\hept{\begin{cases}m^2-1=3\\m\ne2\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\left(l\right)\\m=-2\end{cases}}\)
b/ Hai đường thẳng cắt nhau khi
\(m^2-1\ne3\Leftrightarrow\orbr{\begin{cases}m\ne2\\m\ne-2\end{cases}}\)
c/ Hai đường thẳng trùng nhau khi
\(\hept{\begin{cases}m^2-1=3\\m=2\end{cases}}\Leftrightarrow m=2\)
d/ Hai đường thẳng vuông góc khi
(m2 - 1).3 = 1
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{2}{\sqrt{3}}\\m=\frac{-2}{\sqrt{3}}\end{cases}}\)
d1 song song d2 khi:
\(\left\{{}\begin{matrix}m\ne0\\\frac{1}{m}=\frac{2m-1}{6}\ne\frac{m}{-3}\end{matrix}\right.\)
\(\frac{1}{m}=\frac{2m-1}{6}\Rightarrow2m^2-m-6=0\)
\(\Rightarrow\) Theo Viet \(m_1m_2=\frac{-6}{2}=-3\)
Để hai đường thẳng vuông góc thì m(2m-3)=-1
\(\Leftrightarrow\left(m-1\right)\left(2m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{2}\end{matrix}\right.\)
a, - Để 2 đường thẳng trên vuông góc với nhau thì :
\(\frac{1}{m}.\left(-m\right)=-1\)
=> \(-1=-1\) ( luôn đúng với mọi m, \(m\ne0\) )
Vậy (d1 ) và (d2 ) luôn vuông góc với nhau với mọi giá trị m ≠ 0 .
b, - Gỉa sử đường thẳng (d1 ) luôn đi qua điểm \(A\left(x_0,y_0\right)\) với mọi \(m\ne0\)
=> \(y_0=-mx_0+m+1\)
=> \(y_0-1=m\left(1-x_0\right)\)
=> \(\left\{{}\begin{matrix}y_0-1=0\\1-x_0=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x_0=1\\y_0=1\end{matrix}\right.\)
Vậy điểm cố định (d1) luôn đi qua là điểm ( 1, 1 ) .
Nguyễn Ngọc Lộc ?Amanda?Nguyễn Lê Phước ThịnhPhạm Lan HươngTrần Quốc KhanhAkai HarumaHoàng Thị Ánh Phương Trên con đường thành công không có dấu chân của kẻ lười biếngTrung NguyenHy MinhKhánh LinhVũ Minh Tuấn@Mysterious Person giúp e với e cảm ơn trc
\(\left(d_1\right)\text{//}\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne\pm3\end{matrix}\right.\Leftrightarrow m=1\\ \left(d_1\right)\cap\left(d_2\right)\text{ tại 1 điểm trên Oy}\\ \Leftrightarrow\left\{{}\begin{matrix}y=\left(m-3\right)\cdot0+m^2-6\\y=-2m\cdot0+3=3\end{matrix}\right.\Leftrightarrow m^2-6=3\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\\ \left(d_1\right)\equiv\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6=3\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
a) Giả sử d1 trùng d2 => có m để
=>\(\int^{2m-3=m}_{m^2-1=-2m-4}\Leftrightarrow\int^{m=3}_{m^2+2m+3=0\left(vônghiem\right)}\)
=> d1 khong trùng với d2
b)
+d1//d2 => m=3
+d1 cắt d2 => m\(\ne\)3
+d1 vuông góc d2 => m(2m-3) =-1 => 2m2 -3m +1 =0 => m =1 ; m = 1/2