K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

d1 song song d2 khi:

\(\left\{{}\begin{matrix}m\ne0\\\frac{1}{m}=\frac{2m-1}{6}\ne\frac{m}{-3}\end{matrix}\right.\)

\(\frac{1}{m}=\frac{2m-1}{6}\Rightarrow2m^2-m-6=0\)

\(\Rightarrow\) Theo Viet \(m_1m_2=\frac{-6}{2}=-3\)

NV
21 tháng 5 2020

\(d_1\) nhận \(\left(m;1\right)\) là 1 vtpt

\(d_2\) nhận \(\left(1;-2\right)\) là 1 vtpt

Để \(d_1\) song song \(d_2\)

\(\Leftrightarrow\frac{m}{1}=\frac{1}{-2}\ne\frac{9}{m}\Rightarrow m=-\frac{1}{2}\)

NV
20 tháng 5 2020

\(d_1\) nhận \(\left(3;4\right)\) là 1 vtpt

\(d_2\) nhận \(\left(a;-2\right)\) là 1 vtcp \(\Rightarrow\) nhận \(\left(2;a\right)\) là 1 vtpt

Do đó ta có:

\(\frac{\left|3.2+4.a\right|}{\sqrt{3^2+4^2}.\sqrt{4+a^2}}=cos45^0=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\frac{\left|4a+6\right|}{5\sqrt{a^2+4}}=\frac{\sqrt{2}}{2}\Leftrightarrow\sqrt{2}\left(4a+6\right)=5\sqrt{a^2+4}\)

\(\Leftrightarrow2\left(4a+6\right)^2=25\left(a^2+4\right)\)

\(\Leftrightarrow7a^2+96a-28=0\)

\(\Rightarrow a_1+a_2=-\frac{96}{7}\) (theo Viet)

31 tháng 5 2019

Để hai đường thẳng song song thì:

m 2 = 2 m − 2 3 ≠ − m + ​ 6 1 ⇔ m 2 = 2 m − 2 3 m 2 ≠ − m + ​ 6 1 ⇔ 3 m = 4 m − 4 m ≠ − 2 m + 12 ⇔ m = 4 m ≠ 4

không tồn tại m thỏa mãn yêu cầu bài toán.

ĐÁP ÁN D

11 tháng 6 2019

Hai đường thẳng song song khi và chỉ khi

Suy ra : m2+ 1- 2m = 0 hay m= 1

Chọn D.

NV
1 tháng 5 2020

1.

d1 nhận \(\left(m;1\right)\) là 1 vtpt

d2 nhận \(\left(1;m\right)\) là 1 vtpt

Để 2 đường thẳng cắt nhau

\(\Leftrightarrow m^2\ne1\Rightarrow m\ne\pm1\)

2.

d1 nhận \(\left(m;1\right)\) là 1 vtpt

d2 nhận \(\left(1;m\right)\) là 1 vtpt

Để 2 đường thẳng song song hoặc trùng nhau

\(\Rightarrow m^2=1\Rightarrow m=\pm1\)

Để 2 đường thẳng song song \(\Rightarrow m=-1\)

7. Bạn viết đề ko đúng, nhìn đáp án B là biết bạn viết thiếu

Để hai đường song song thì m=2 và m-1=1 và m<>-1

=>m=2

NV
21 tháng 5 2020

\(d_1\) nhận \(\left(2;-m\right)\) là 1 vtpt

\(d_2\) nhận \(\left(-1;3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt

Để 2 đường thẳng vuông góc

\(\Leftrightarrow2.\left(-1\right)+\left(-m\right).3=0\Rightarrow m=-\frac{2}{3}\)

18 tháng 4 2017

Để hai đường thẳng d1;  d2 cắt nhau tại một điểm nằm trên d3 khi và chỉ khi 3 đường thẳng d1;  d2; d3 đồng quy.

Giao điểm của d1 và d3 là nghiệm hệ phương trình:

x − 2 y ​ + 1 = 0 x + ​ y − 5 = 0 ⇔ x = 3 y = 2 ⇒ A ( 3 ;    2 )

Do 3 đường thẳng này đồng quy  nên điểm A thuộc d2. Suy ra:

3m -  (3m-2).2 + 2m – 2= 0

⇔ 3m – 6m + 4 + 2m – 2 =  0  ⇔  - m  + 2 = 0  ⇔  m= 2

Với m= 2 thì đường thẳng d2 :  2x -  4y  + 2= 0 hay  x- 2y + 1 =0 . Khi đó, đường thẳng d1 và d2 trùng nhau.

Vậy không có giá trị nào của m thỏa mãn.

ĐÁP ÁN D

7 tháng 8 2019

Không biết quá trình tính toán có bị sai chỗ nào không nữa :v Hỏi đáp ToánHỏi đáp Toán

8 tháng 8 2019

Cảm ơn bn Nguyễn Minh Hùng nhaaa. Bn làm đúng r, chắc đề có vấn đề =))