K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2015

a) Giả sử d1 trùng d2 => có m để

=>\(\int^{2m-3=m}_{m^2-1=-2m-4}\Leftrightarrow\int^{m=3}_{m^2+2m+3=0\left(vônghiem\right)}\)

=> d1 khong trùng với  d2

b)

+d1//d2 => m=3

+d1 cắt d2 => m\(\ne\)3

+d1 vuông góc d2 => m(2m-3) =-1 => 2m2 -3m +1 =0 => m =1 ; m = 1/2

4 tháng 4 2021

Để (d) và (d) song song thì
+) b≠b'
⇔m-2≠3
⇔m≠5
+) a=a'
⇔m-1=-2
⇔m=-1 (thỏa mãn điều kiện)
Vậy tại m=-1 thì (d1) // (d2)

a: Để hai đường song thì 3/2m-1=m+2 và 1-2m<>m-3

=>1/2m=3 và -3m=-4

=>m=6

b: Để (d1) vuông góc với (d2) thì (3/2m-1)(m+2)=-1

\(\Leftrightarrow\left(3m-2\right)\left(m+2\right)=-2\)

\(\Leftrightarrow3m^2+6m-2m-4+2=0\)

=>3m^2+4m-2=0

=>\(m\in\left\{\dfrac{-2+\sqrt{10}}{3};\dfrac{-2-\sqrt{10}}{3}\right\}\)

27 tháng 11 2016

a/ Hai đường thẳng // khi

\(\hept{\begin{cases}m^2-1=3\\m\ne2\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\left(l\right)\\m=-2\end{cases}}\)

b/ Hai đường thẳng cắt nhau khi

\(m^2-1\ne3\Leftrightarrow\orbr{\begin{cases}m\ne2\\m\ne-2\end{cases}}\)

c/ Hai đường thẳng trùng nhau khi

\(\hept{\begin{cases}m^2-1=3\\m=2\end{cases}}\Leftrightarrow m=2\)

d/ Hai đường thẳng vuông góc khi

(m2 - 1).3 = 1

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{2}{\sqrt{3}}\\m=\frac{-2}{\sqrt{3}}\end{cases}}\)

16 tháng 7 2021

a) \(\left(d_1\right):y=mx+2m\)

 \((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Rightarrow m=3\)

b) \(\left(d_1\right)\equiv\left(d_2\right)\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Rightarrow\) không có m thỏa

c) \(\left(d_1\right)\bot\left(d_2\right)\Rightarrow m.\left(2m-3\right)=-1\Rightarrow2m^2-3m+1=0\)

\(\Rightarrow\left(m-1\right)\left(2m-1\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{2}\end{matrix}\right.\)

Ta có: (d1): y=m(x+2)

nên y=mx+2m

a) Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2m=-3\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Leftrightarrow m=3\)