Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử d1 trùng d2 => có m để
=>\(\int^{2m-3=m}_{m^2-1=-2m-4}\Leftrightarrow\int^{m=3}_{m^2+2m+3=0\left(vônghiem\right)}\)
=> d1 khong trùng với d2
b)
+d1//d2 => m=3
+d1 cắt d2 => m\(\ne\)3
+d1 vuông góc d2 => m(2m-3) =-1 => 2m2 -3m +1 =0 => m =1 ; m = 1/2
a: Để hai đường song thì 3/2m-1=m+2 và 1-2m<>m-3
=>1/2m=3 và -3m=-4
=>m=6
b: Để (d1) vuông góc với (d2) thì (3/2m-1)(m+2)=-1
\(\Leftrightarrow\left(3m-2\right)\left(m+2\right)=-2\)
\(\Leftrightarrow3m^2+6m-2m-4+2=0\)
=>3m^2+4m-2=0
=>\(m\in\left\{\dfrac{-2+\sqrt{10}}{3};\dfrac{-2-\sqrt{10}}{3}\right\}\)
a/ Hai đường thẳng // khi
\(\hept{\begin{cases}m^2-1=3\\m\ne2\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\left(l\right)\\m=-2\end{cases}}\)
b/ Hai đường thẳng cắt nhau khi
\(m^2-1\ne3\Leftrightarrow\orbr{\begin{cases}m\ne2\\m\ne-2\end{cases}}\)
c/ Hai đường thẳng trùng nhau khi
\(\hept{\begin{cases}m^2-1=3\\m=2\end{cases}}\Leftrightarrow m=2\)
d/ Hai đường thẳng vuông góc khi
(m2 - 1).3 = 1
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{2}{\sqrt{3}}\\m=\frac{-2}{\sqrt{3}}\end{cases}}\)
a) \(\left(d_1\right):y=mx+2m\)
\((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Rightarrow m=3\)
b) \(\left(d_1\right)\equiv\left(d_2\right)\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Rightarrow\) không có m thỏa
c) \(\left(d_1\right)\bot\left(d_2\right)\Rightarrow m.\left(2m-3\right)=-1\Rightarrow2m^2-3m+1=0\)
\(\Rightarrow\left(m-1\right)\left(2m-1\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{2}\end{matrix}\right.\)
Ta có: (d1): y=m(x+2)
nên y=mx+2m
a) Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2m=-3\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Leftrightarrow m=3\)
Chọn B
có cách làm k ạ