Cho a,b,c,d thỏa mãn: \(a^2+b^2+c^2+d^2\)
Chứng minh a+b+c+d là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì \(a\) là số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp .
\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn .
Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .
Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))
Vậy : \(a+b+c+d\) là hợp số .
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì a là số nguyên dương nên a, (a–1) là hai số tự nhiên liên tiếp
⇒a−1⋮2
Tương tự ta có \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2
=> \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn
Lại có \(a^2+b^2=c^2+d^2\)\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)\)là số chẵn.
Do đó \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\in\) N*)
⇒ \(a+b+c+d\) là hợp số
Tick nha kkk 😘
Ta có: a+b+c+d-(a+b+c+d) = a(a-1)+b(b-1)+c(c-1)+d(d-1) Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp => a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2 => a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2 Hay a+b+c+d-(a+b+c+d) chia hết cho 2 <=> 2( a+b) - (a+b+c+d) chia hết cho 2 (Vì a+b=c+d) Vì 2( a+b) chia hết cho 2, a+b+c+d-(a+b+c+d) chia hết cho 2 => a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương) Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).
Ta có:
a^2+b^2=c^2+d^2 => a^2+b^2+c^2+d^2=2.(a^2+b^2)
=>a^2+b^2+c^2+d^2 chia hết cho 2 (1)
Lại có: a^2+b^2+c^2+d^2 - (a+b+c+d) = (a^2-a) + (b^2-b) + (c^2-c) + (d^2 - d)
= a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1)
Do a.(a-1), b.(b-1), c,(c-1), d.(d-1) là các tích của 2 Số liên tiếp
=> 4 tích a.(a-1), b.(b-1), c,(c-1), d.(d-1) đều chia hết cho 2
=>a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1) chia hết cho 2 <=> a^2+b^2+c^2+d^2 - (a+b+c+d) chia hết cho 2 (2)
Từ (1) và (2) có: a+b+c+d chia hết cho 2
Mà a,b,c,d là các số nguyên dương => a+b+c+d >2
Vậy a+b+c+d là hợp số
Ta có: a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d)
= a(a-1)+b(b-1)+c(c-1)+d(d-1)
Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp
=> a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2
=> a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2
Hay a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
<=> 2( a\(^2\)+b\(^2\)) - (a+b+c+d) chia hết cho 2 (Vì a\(^2\)+b\(^2\)=c\(^2\)+d\(^2\))
Vì 2( a\(^2\)+b\(^2\)) chia hết cho 2, a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
=> a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn
Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương)
Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).
xét biểu thức :
A = ( a2 - a ) + ( b2 - b ) + ( c2 - c ) + ( d2 - d )
Ta thấy A chẵn nên a2 + b2 + c2 + d2 - ( a + b + c + d ) là số chẵn
từ đề bài a2 + c2 = b2 + d2 nên a2 + c2 + b2 + d2 nên a + b + c + d chẵn
Mà tổng này > 2 nên là hợp số
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
a,b,c,d nguyên dương nhá
xét: (\(a^2\)+\(b^2\)+\(c^2\)+\(d^2\))-(a+b+c+d)
=a(a-1)+b(b-1)+c(c-1)+d(d-1)
vì a là số nguyên dương nên a,(a-1) là 2 số tự nhiên liên tiếp
=> a-1\(⋮\)2
tương tự ta có b(b-1);c(c-1);d(d-1) đều \(⋮\)2
=> a(a-1)+b(b-1)+c(c-1)+d(d-1) là số chẵn
lại có:\(a^2\)+\(c^2\)=\(b^2\)+\(d^2\)=> \(a^2\)+\(b^2\)+\(c^2\)+\(d^2\)=2(\(b^2\)+\(d^2\)) là số chẵn
Do đó: a+b+c+d là số chẵn mà a+b+c+d >2(do a,b,c,d \(\in\)\(ℕ^∗\))
=> a+b+c+d là hợp số