Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )
Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3
Xét 4 số a,b,c,d khi chia cho 4
- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4
- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3
có hiệu chia hết cho 2. do đó P chia hết cho 4
#)Giải :
Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3
Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ
Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2
=> Tích trên chia hết cho 3 và 4
Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12
#~Will~be~Pens~#
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì a là số nguyên dương nên a, (a–1) là hai số tự nhiên liên tiếp
⇒a−1⋮2
Tương tự ta có \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2
=> \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn
Lại có \(a^2+b^2=c^2+d^2\)\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)\)là số chẵn.
Do đó \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\in\) N*)
⇒ \(a+b+c+d\) là hợp số
Tick nha kkk 😘
cậu viết lại công thức trong câu trả lời dduocj không