K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

\(P=\left|x-2015\right|+\left|2016-x\right|+\left|2017-x\right|\)

\(\ge x-2015+0+2017-x=2\)

Dấu "=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2015\ge0\\2016-x=0\\2017-x\ge0\end{cases}}\Leftrightarrow x=2016\)

Vậy ..

25 tháng 4 2016

Ta thay |x-2013|;|x-2014|;|x-2015| >=0 voi moi x thuoc R

Dau = xay ra khi x-2013+x-2014+x-2015=0

3x+(-2013+-2014+-2015)=0

3x+(-6042)=0

3x=6042

x=2014

Vay Gttd cua bt tren la 0 khi x=2014

17 tháng 4 2017

Min D = 2 <=> x= 2014

17 tháng 12 2017
Minh dong y voi ket qua ban nay
13 tháng 3 2019

a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)

*TH1: \(x< 2016\):

\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)

*TH2: \(2016\le x< 2017\):

\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)

*TH3: \(2017\le x< 2018\):

\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)

*TH4: \(x\ge2018\):

\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)

Vậy GTNN của P là 2 khi x = 2017.

b) \(x-2xy+y-3=0\)

\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)

\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)

2x-15-51-1
1-2y1-15-5
x3-210
y01-23
26 tháng 2 2019

máy bạn có kí tự này không \(|\)\(|\)đó. chỗ bọn mk viết thì cậu nhấn vào kí tự la mã ở cuối cùng. 

25 tháng 4 2021

A=|x+2|-|x-3|≤ | x+2-(x-3)|
Vì | x+2-(x-3)|
=> | x+2-x+3| = | (x-x)+(2+3)|=| 5|=5
vậy GTNN của A = 5

26 tháng 4 2021

A = | x + 2 | + | x - 3 |

= | x + 2 | + | 3 - x | ≥ | x + 2 + 3 - x | = 5 ∀ x

Dấu "=" xảy ra <=> ( x + 2 )( 3 - x ) ≥ 0 <=> -2 ≤ x ≤ 3

Vậy MinA = 5 <=> -2 ≤ x ≤ 3

14 tháng 9 2018

A=|x-102|+|2-x|\(\ge\)|x-102+2-x|=|-100|=100

vậy minA=100 <=>|x-102|=0 hoặc |2-x|=0

<=>x-102=0 hoặc 2-x=0

<=> x=102 hoặc x=2

7 tháng 1 2016

\(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)