Cho \(\Delta ABC\) , trên BC lấy điểm M sao cho \(\dfrac{MC}{MB}=\dfrac{1}{2}\) , trên AC lấy điểm N sao cho \(\dfrac{NC}{NA}=\dfrac{1}{2}\) . Gọi G là giao điểm của AM và BN. C/minh:
a, MN // AB
b, \(\dfrac{GM}{GA}=\dfrac{GN}{GB}=\dfrac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: BM=2MC(gt)
nên \(\dfrac{MC}{BM}=\dfrac{1}{2}\)(1)
Ta có: NA=2NC(gt)
nên \(\dfrac{NC}{NA}=\dfrac{1}{2}\)(2)
Từ (1) và (2) suy ra \(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)
Xét ΔCAB có
N∈AC(gt)
M∈BC(gt)
\(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)(cmt)
Do đó: MN//AB(Định lí Ta lét đảo)
Nối M với C:
SAMC=SBMC=\(\dfrac{1}{2}\)SABC(Vì chung đường cao hạ từ C, đáy AM=MB)
SAMC=240:2=120cm2
SAMN=\(\dfrac{1}{2}\)SMNC(Vì chung đường cao hạ từ M, đáy AN=\(\dfrac{1}{2}\)NC)
Suy ra:SAMN=\(\dfrac{1}{3}\)SAMC
SAMN=120:3=40cm2
Tham khảo
S AMN= 1/2 S ABN ( cùng đường cao, đáy AM = 1/2 AB )
S ABN = 1/3 S ABC ( cùng đường cao , đáy AN = 1/3 AC )
S AMN = 1/2 x 1/3 S ABC = 1/6 SABC = 240 : 6 = 40 cm2
dùng talet đảo