Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có CN/NA=CM/MB(=1/2)
⇒NM//AB (theo định lí ta-lét đảo)
b. Ta có GA/GM=GB/GN=AB/MN ( theo hệ quả định lí ta-lét)
Lại có AB/MN=CB/CM=3 (theo hệ quả định lí ta-lét)
Do đó , ta được GA/GM=GB/GN=3
chúc bạn học giỏi,mong là mình đã giúp được bạn
a, Ta có: \(MB=2MC\Rightarrow BC=3MC\)
Mà \(AC=3CN\) (GT) nên \(\left\{{}\begin{matrix}\dfrac{MC}{BC}=\dfrac{NC}{AC}=\dfrac{MN}{AB}=\dfrac{1}{3}\\MN//AB\end{matrix}\right.\Rightarrow AB=3MN\) (hệ quả định lý Thales - đpcm)
b, Từ phần a, ta có:
\(MN//AB\Rightarrow\dfrac{GA}{GM}=\dfrac{MN}{AB}=\dfrac{1}{3}\Rightarrow GA=3GM\) (định lý Thales - đpcm)
Chúc bạn học tốt nha
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{ABH}=\widehat{ACH}\)
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAE}=\widehat{NAE}\)
Xét ΔAME và ΔANE có
AM=AN(gt)
\(\widehat{MAE}=\widehat{NAE}\)(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)
mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)
nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
a) Ta có: BM=2MC(gt)
nên \(\dfrac{MC}{BM}=\dfrac{1}{2}\)(1)
Ta có: NA=2NC(gt)
nên \(\dfrac{NC}{NA}=\dfrac{1}{2}\)(2)
Từ (1) và (2) suy ra \(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)
Xét ΔCAB có
N∈AC(gt)
M∈BC(gt)
\(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)(cmt)
Do đó: MN//AB(Định lí Ta lét đảo)