K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,D$ thẳng hàng:

$\frac{AD}{DC}.\frac{IM}{IA}.\frac{BC}{BM}=1$

$\Leftrightarrow \frac{AD}{DC}.2.3=1$

$\Leftrightarrow \frac{AD}{DC}=\frac{1}{6}$

$\Rightarrow \frac{AD}{DC}=\frac{1}{7}$

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Hình vẽ:

undefined

a) Xét ΔABC có 

AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

BN là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

CP là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)

Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)

a) Ta có: BM=2MC(gt)

nên \(\dfrac{MC}{BM}=\dfrac{1}{2}\)(1)

Ta có: NA=2NC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{1}{2}\)(2)

Từ (1) và (2) suy ra \(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)

Xét ΔCAB có 

N∈AC(gt)

M∈BC(gt)

\(\dfrac{CM}{MB}=\dfrac{CN}{NA}\)(cmt)

Do đó: MN//AB(Định lí Ta lét đảo)