K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

        \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

          \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\)

14 tháng 2 2018

cảm ơn bạn nhé

15 tháng 8 2018

bạn ơi bạn làm dc chưa

5 tháng 5 2019

a,  Áp dụng t/c dãy tỉ : a/b = b/c = c/d = (a + b + c)/(b + c + d). suy ra (a/b)^3 = (a+b+c/b+c+d)^3 
Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (do rút gọn

11 tháng 10 2015

có a - (-b + c) = d

a + b - c = d

a + b - c - b = d - b

a - c = -b + d (đpcm) 

15 tháng 7 2015

ĐỀ sai 

 a = 1 ; b = 4 ; c = 1 ; d = 2 ta có 

 \(\frac{1}{4}

7 tháng 9 2016

Chắc bạn ghi sai đề. Đề đúng đâu: Chứng tỏ: Nếu \(\frac{a}{b}< \frac{c}{d}\) với \(\left(a,b,c,d\in Z;b,d\ne0\right)\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) .

\(\Rightarrow ad+ab< bc+ab\) .

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

Ta có: \(ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)