Tìm GTNN của |x-3|+|x-20|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = | 3 - x | + | 4 - x | + 20
=> A = | x - 3 | + | 4 - x | + 20
Áp dụng BĐT | a | + | b |\(\ge\)| a + b |
=> | x - 3 | + | 4 - x |\(\ge\)| x - 3 + 4 - x | = | 1 | = 1
=> A\(\ge\)1 + 20 = 21
Dấu "=" xảy ra <=>\(3\le x\le4\)
Vậy minA = 21 <=>\(x\in\left\{3;4\right\}\)
Đặt \(A=\left|3-x\right|+\left|4-x\right|+20\)
\(\Rightarrow A=\left|x-3\right|+\left|4-x\right|+20\ge\left|x-3+4-x\right|+20=\left|1\right|+20=1+20=21\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-3\right)\left(4-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-3\le0\\4-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\4\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge4\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-3\ge0\\4-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\4\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le4\end{cases}}\Leftrightarrow3\le x\le4\)
Vậy \(minA=21\)\(\Leftrightarrow3\le x\le4\)
| 3 - x | + | 4 - x | + 20
= | 3 - x | + | x - 4 | + 20
Ta có : | 3 - x | + | x - 4 | ≥ | 3 - x + x - 4 | = |-1| = 1
=> | 3 - x | + | x - 4 | + 20 ≥ 1 + 20 = 21
Dấu "=" xảy ra <=> ( 3 - x )( x - 4 ) = 0
=> 3 ≤ x ≤ 4
Vậy GTNN của biểu thức = 21 <=> 3 ≤ x ≤ 4
Đặt A = |3 - x| + |4 - x| + 20 = |x - 3| + |4 - x| + 20\(\ge\left|x-3+4-x\right|+20=\left|1\right|+20=21\)
Dấu "=" xảy ra <=> \(\left(x-3\right)\left(4-x\right)\ge0\)
Xét các trường hợp
TH1 : \(\hept{\begin{cases}x-3\ge0\\4-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge3\\x\le4\end{cases}\Rightarrow3\le x\le4}\)
TH2 : \(\hept{\begin{cases}x-3\le0\\4-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le3\\x\ge4\end{cases}}\left(\text{loại}\right)\)
Vậy Min A = 21 <=> \(3\le x\le4\)
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
\(P=x^2+y^2+z^2+\dfrac{20}{x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{3}+\dfrac{20}{x+y+z}\)
\(\Leftrightarrow P\ge\dfrac{\left(x+y+z\right)^2}{3}+\dfrac{9}{x+y+z}+\dfrac{9}{x+y+z}+\dfrac{2}{x+y+z}\)
\(\Leftrightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y+z\right)^2}{3}.\dfrac{9}{x+y+z}.\dfrac{9}{x+y+z}}+\dfrac{2}{3}\)
(theo AM-GM và do \(x+y+z\le3\Rightarrow\dfrac{2}{x+y+z}\ge\dfrac{2}{3}\))
\(\Leftrightarrow P\ge\dfrac{29}{3}\)
Dấu = xảy ra khi x=y=z=1
Vậy minP\(=\dfrac{29}{3}\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Đặt \(A=|x-3|+|x-20|\)
Ta có : \(|x-3|=|3-x|\)
\(\Rightarrow A=|3-x|+|x-20|\ge|3-x+x-20|=|-17|=17\)
\(\Rightarrow minA=17\Leftrightarrow\left(3-x\right).\left(x-20\right)=0\)
\(TH1:\hept{\begin{cases}3-x\ge0\\x-20\ge0\end{cases}}\Rightarrow\hept{\begin{cases}3\ge x\\x\ge20\end{cases}}\Rightarrow\hept{\begin{cases}x\le3\\x\ge20\end{cases}}\)\(\Rightarrow\)vô lý
\(TH2:\hept{\begin{cases}3-x\le0\\x-20\le0\end{cases}\Rightarrow}\hept{\begin{cases}3\le x\\x\le20\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le20\end{cases}}\Rightarrow3\le x\le20\)
Vậy \(minA=17\Leftrightarrow3\le x\le20\)