Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Linh cảm của chúa Pain đề sai :)
đề phải là tìm giá trị lớn nhất .
a, \(a=\frac{1}{x^2+5}\)
\(x^2+5\ge5\)
mẫu : \(\ge\rightarrow\le\)
\(\Rightarrow A\le\frac{1}{5}"="\Leftrightarrow x=0\)
b,
\(b=\frac{\left(x+y-z\right)^2.2018}{a^4+b^4+2018}\)
\(a^4\ge0."="\Leftrightarrow a=0\)
\(b^4\ge0"="\Leftrightarrow b=0\)
\(a^4+b^4+2018\ge2018\)
mẫu \(\ge\rightarrow\le\)
\(\Rightarrow B\le\frac{\left(x+y-z\right)^2.2018}{2018}\Rightarrow B\le0\le\left(x+y-z\right)^2\) ( rút gọn 2018)
\(\Rightarrow B\le0\)
P/s : Chém bừa
a, Vì \(\left(x-1\right)^2\ge0\Rightarrow A=\left(x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1
Vậy GTNN của A=2018 khi x=1
b, Vì \(\hept{\begin{cases}\left(x+2\right)^{2018}\ge0\\\left(y-3\right)^{2020}\ge0\end{cases}\Rightarrow\left(x+2\right)^{2018}+\left(y-3\right)^{2020}\ge0}\)
\(\Rightarrow B=\left(x+2\right)^{2018}+\left(y-3\right)^{2020}+2019\ge2019\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy GTNN của B = 2019 khi x=-2,y=3
ta có
A = ( x - 1 )2 + 2018
=( x - 1 )2 + 2018≥2018
dấu "=" xảy ra khi ( x - 1 )2=0=>x=1
vs min A=2018 khi x=1
\(\left(x+1\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+2018\ge2018\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\y+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}\)
Vậy GTNN của B là 2018 với \(x=-1;y=-3\)
Ta có : \(A=\left(|x-3|+2\right).2+|y+3|+2018\)
\(=2.|x-3|+4+|y-3|+2018\)
\(=\left(2.|x-3|+|y+3|\right)+\left(4+2018\right)\)
\(=\left(2.|x-3|+|y+3|\right)+2022\)
Vì \(|x-3|\ge0\)\(\forall x\)
\(|y+3|\ge0\)\(\forall y\)
\(\Rightarrow2.|x-3|+|y+3|\ge0\)\(\forall x,y\)
\(\Rightarrow2.|x-3|+|y+3|+2022\ge2022\)\(\forall x,y\)
hay \(A\ge2022\)
\(\Rightarrow minA=2022\Leftrightarrow x-3=0\)và \(y+3=0\)
\(\Leftrightarrow x=3\)và \(y=-3\)
Vậy \(minA=2022\Leftrightarrow x=3\)và \(y=-3\)
B1: Đk: 5x ≥ 0 => x ≥ 0
Vì |x + 1| ≥ 0 => |x + 1| = x + 1
|x + 2| ≥ 0 => |x + 2| = x + 2
|x + 3| ≥ 0 => |x + 3| = x + 3
|x + 4| ≥ 0 => |x + 4| = x + 4
=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
=> x + 1 + x + 2 + x + 3 + x + 4 = 5x
=> 4x + 10 = 5x
=> x = 10
B2: Ta có: |x - 2018| = |2018 - x|
=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018
Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0
Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)
Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)
Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018
B3:
a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0
=> |x + 1| + |2y - 4| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy...
b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0
=> |x - y + 1| + (y - 3)2 ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy...
c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0 ; |2x - 1| ≥ 0
=> |x + y| + |x - z| + |2x - 1| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)
Ta có :
\(\left(x+y-3\right)^4\ge0\) \(\left(\forall x,y\inℚ\right)\)
\(\left(x-2y\right)^2\ge0\) \(\left(\forall x,y\inℚ\right)\)
\(\Rightarrow\)\(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-3\right)^4=0\\\left(x-2y\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=3\\x+y-3y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=3\\x+y=3y\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-y\\3=3y\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\y=1\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-1\\y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Vậy \(A_{min}=2018\) khi \(x=2\) và \(y=1\)
Chúc bạn học tốt ~
Ta có \(\left(x+y-3\right)^4\ge0\) với mọi giá trị của x
\(\left(x-2y\right)^2\ge0\)với mọi giá trị của x
=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)với mọi giá trị của x
=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)với mọi gt của x
=> GTNN của A là 2018.
A = | x - 1 | + | x - 2018 |
A = | 1 - x | + | x - 2018 |
A = | 1 - x | + | x - 2018 | \(\ge\) | 1 - x + x - 2018 |
A = | 1 - x | + | x - 2018 | \(\ge\) 2017
Dấu = xảy ra \(\Leftrightarrow\)1 - x\(\ge\)0 , x - 2018 \(\ge\)0 ( không thõa mãn ) hoặc 1 - x \(\le\)0 , x - 2018 \(\le\)0
\(\Leftrightarrow\)1 \(\le\)0\(\le\)2018
\(\Rightarrow\)A \(\ge\)2017 . Dấu = xảy ra \(\Leftrightarrow\)1 \(\le\)x \(\le\)2018
Vậy : Min A = 2017 \(\Leftrightarrow\)1 \(\le\)x\(\le\)2018
\(\left(x-1\right)^{10}+\left(y-3\right)^{20}+2018\)
Nhận xét: \(\left(x-1\right)^{10}\ge0;\left(y-3\right)^{20}\ge0\)
\(\Rightarrow\left(x-1\right)^{10}+\left(y-3\right)^{20}+2018\ge2018\)
Dấu bằng xảy ra khi x=1 y=3