1) Tim GTLN- GTNN cua ham so
a) y = -2Sin(\(x+\dfrac{\Pi}{3}\)) + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=f\left(x\right)=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3+2\left(12-x\right)}{12-x}=2+\frac{3}{12-x}\)
Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTLN <=> \(\frac{3}{12-x}\) đạt GTLN
=> 12 - x là số nguyên dương nhỏ nhất
=> 12 - x = 1 => x = 11
Vậy GTLN của hàm số đó là 5 tại x = 11
Để \(f\left(x\right)=2+\frac{3}{12-x}\) đạt GTNN <=> \(\frac{3}{12-x}\)đạt GTNN
=> 12 - x là số nguyên âm lớn nhất
=> 12 - x = - 1 => x = 13
Vậy \(y_{min}=-1\Leftrightarrow x=13\)
c.
\(y=2sin2x-1\)
Do \(-1\le sin2x\le1\Rightarrow-3\le y\le1\)
\(y_{min}=-3\) khi \(sin2x=-1\)
\(y_{max}=1\) khi \(sin2x=1\)
d.
\(-1\le sin3x\le1\Rightarrow-1\le y\le3\)
e.
\(0\le sin^22x\le1\Rightarrow1\le y\le4\)
\(-1\le sin\left(x+\frac{\pi}{3}\right)\le1\Rightarrow-2\le y\le2\)
\(y_{min}=-2\) khi \(x=-\frac{5\pi}{6}\)
\(y_{max}=2\) khi \(x=\frac{\pi}{6}\)
\(f\left(x\right)=2-9x^2+x\)
\(=2-9\left(x^2-\frac{x}{9}\right)\)
\(=2-9\left(x^2-2.x.\frac{1}{18}+\frac{1}{324}-\frac{1}{324}\right)\)
\(=2-9\left(x-\frac{1}{18}\right)^2+\frac{1}{36}\)
\(=\frac{73}{36}-9\left(x-\frac{1}{18}\right)^2\)
Vì \(-9\left(x-\frac{1}{18}\right)^2\le0;\forall x\)
\(\Rightarrow\frac{73}{36}-9\left(x-\frac{1}{18}\right)^2\le\frac{73}{36};\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\left(x-\frac{1}{18}\right)^2=0\Leftrightarrow x=\frac{1}{18}\)
Vậy MAX\(f\left(x\right)=\frac{73}{36}\Leftrightarrow x=\frac{1}{18}\)
\(-1\le sin\left(x+\dfrac{\pi}{3}\right)\le1\Rightarrow-2\le2sin\left(x+\dfrac{\pi}{3}\right)\le2\)
\(\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(sin\left(x+\dfrac{\pi}{3}\right)=1\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)
\(y_{max}=5\) khi \(sin\left(x+\dfrac{\pi}{3}\right)=-1\Rightarrow x=-\dfrac{5\pi}{6}+k2\pi\)
Lời giải:
Vì $\sin (x+\frac{\pi}{3})\in [-1;1]$
$\Rightarrow y=-2\sin (x+\frac{\pi}{3})+3\in [1;5]$
Vậy $y_{\min}=1$ và $y_{\max}=5$