K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

a, Ta có ​: \(a\le b\)

\(\Leftrightarrow-9a\ge-9b\) ( Nhân của hai vế số nguyên âm )

b, Ta có : \(a\le b\)

\(\Leftrightarrow\dfrac{a}{5}\le\dfrac{b}{5}\) ( Chia cả hai vế cho cùng 1 số nguyên dương )

22 tháng 3 2018

a) \(a\le b\)

Nhân cả hai vế với -9.

\(\Rightarrow-9a\ge-9b\)

b) Nhân cả hai vế với \(\dfrac{1}{5}\)

\(\Rightarrow\dfrac{1}{5}a=\dfrac{a}{5}\le\dfrac{1}{5}b=\dfrac{b}{5}\)

7 tháng 10 2018

Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, Dũng Nguyễn, TRẦN MINH HOÀNG, JakiNatsumi, Hoàng Phong, ...

7 tháng 10 2018

Giup minh voi !!! Khôi Bùi​,DƯƠNG PHAN KHÁNH DƯƠNG, Phùng Khánh Linh, Nhã Doanh, hattori heiji, Phạm Hoàng Giang, Dũng Nguyễn, ...

a: \(A=\dfrac{-13}{21}=\dfrac{-26}{42}\)

\(B=\dfrac{-9}{14}=\dfrac{-27}{42}\)

mà -26>-27

nên A>B

b: \(A=\dfrac{99}{101}=1-\dfrac{2}{101}\)

\(B=\dfrac{2011}{2013}=1-\dfrac{2}{2013}\)

mà 2/101>2/2013

nên A<B

9 tháng 5 2019

a<b nên -a>-b có 5>3 nên 5+(-a)>3+(-b) hay rút gọn được 5-a>3-b

1 LÌKEnhé

NV
27 tháng 12 2020

\(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{9ab^2}{6b}=a-\dfrac{3}{2}ab\)

Tương tự và cộng lại:

\(T\ge a+b+c-\dfrac{3}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{2}\left(a+b+c\right)^2=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

26 tháng 6 2017

Giải:

a) Theo đề ra, ta có:

\(\dfrac{a}{b}=\dfrac{5}{7}\)\(a+b=72\) (Sửa x+y =72)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}\)

\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)

\(\Rightarrow\dfrac{a}{5}=6\Rightarrow a=6.5=30\)

\(\Rightarrow\dfrac{b}{7}=6\Rightarrow b=6.7=42\)

Vậy ...

b) Theo đề ra, ta có:

\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\)\(a+b-c=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)

\(\Rightarrow\dfrac{a}{6}=3\Rightarrow a=3.6=18\)

\(\Rightarrow\dfrac{b}{4}=3\Rightarrow b=3.4=12\)

\(\Rightarrow\dfrac{c}{3}=3\Rightarrow a=3.3=9\)

Vậy ...

c) Theo đề ra, ta có:

\(\dfrac{12}{x}=\dfrac{3}{y}\)\(x-y=36\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}\)

\(\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)

\(\Rightarrow\dfrac{x}{12}=4\Rightarrow x=12.4=48\)

\(\Rightarrow\dfrac{y}{3}=4\Rightarrow x=3.4=12\)

Vậy ...

d) Theo đề ra, ta có:

\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)\(a+b-c=20\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Leftrightarrow\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}=\varnothing\)

Đề câu này sai nhé!

Chúc bạn học tốt!

26 tháng 6 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)

\(\Rightarrow\left\{{}\begin{matrix}a=5.6=30\\b=7.6=42\end{matrix}\right.\)

b) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)

\(\Rightarrow\left\{{}\begin{matrix}a=6.3=18\\b=4.3=12\\c=3.3=9\end{matrix}\right.\)

c) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.4=48\\y=3.4=12\end{matrix}\right.\)

d) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}\) (Vô lý)

=> Không thể làm

9 tháng 8 2015

ko cần lm nhìn đề là tui biết a > b rùi