Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a<b nên -a>-b có 5>3 nên 5+(-a)>3+(-b) hay rút gọn được 5-a>3-b
1 LÌKEnhé
a)Q=\(\dfrac{1+x}{x}\)
b)x không tính được hoặc đề sai
c)?
a: \(Q=\dfrac{1+x}{x\left(x+1\right)}\cdot\dfrac{x+1}{1}=\dfrac{x+1}{x}\)
b: Để Q=1 thì x+1=x(loại)
c: \(Q-\dfrac{1}{2}=\dfrac{x+1}{x}-\dfrac{1}{2}=\dfrac{2x+2-x}{2x}=\dfrac{x+2}{2x}\)
TH1: x>0 hoặc x<-2
=>Q>0
TH2: -2<x<0
=>Q<0
Bài 1:
\(a^2+b^2+c^2=16\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=16\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=16\Rightarrow ab+bc+ac=-8\)\(\Rightarrow\left(ab+bc+ac\right)^2=64\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=64\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=64\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=64\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=16^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=256-2.64=128\)
2,
ÁP dụng bđt phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(Tự cm) ta có
\(B\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ac\right)}+\dfrac{7}{ab+bc+ac}\)
Tiếp tục sử dụng bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)
\(\Rightarrow B\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}=9+\dfrac{7}{ab+bc+ac}\)
SD bđt phụ \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\)
\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)
Do đo \(B\ge21+9=30\)
Dấu bằng xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Bài 1 SD cái bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}+\dfrac{d^2}{t}\ge\dfrac{\left(a+b+c+d\right)^2}{x+y+z+t}\)
Phương pháp : nhân các phân thức lần lượt vs tử của nó để xuất hiện bình phương biến đổi mẫu sao cho xuất hiện a +b+c+d .
Ngại trình bày vì dài quá
Cho a, b, c > 0. Chứng minh \(\dfrac{a}{3a+b+c}+\dfrac{b}{3b+a+c}+\dfrac{c}{3c+a+b}\le\dfrac{3}{5}\)
a, Ta có : \(a\le b\)
\(\Leftrightarrow-9a\ge-9b\) ( Nhân của hai vế số nguyên âm )
b, Ta có : \(a\le b\)
\(\Leftrightarrow\dfrac{a}{5}\le\dfrac{b}{5}\) ( Chia cả hai vế cho cùng 1 số nguyên dương )
a) \(a\le b\)
Nhân cả hai vế với -9.
\(\Rightarrow-9a\ge-9b\)
b) Nhân cả hai vế với \(\dfrac{1}{5}\)
\(\Rightarrow\dfrac{1}{5}a=\dfrac{a}{5}\le\dfrac{1}{5}b=\dfrac{b}{5}\)