K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, Dũng Nguyễn, TRẦN MINH HOÀNG, JakiNatsumi, Hoàng Phong, ...

7 tháng 10 2018

Giup minh voi !!! Khôi Bùi​,DƯƠNG PHAN KHÁNH DƯƠNG, Phùng Khánh Linh, Nhã Doanh, hattori heiji, Phạm Hoàng Giang, Dũng Nguyễn, ...

15 tháng 8 2021

đoạn cuối thiếu dấu"+"

\(A=\dfrac{\sqrt{4}-\sqrt{5}}{4-5}+\dfrac{\sqrt{5}-\sqrt{6}}{5-6}+....+\dfrac{\sqrt{34}-\sqrt{35}}{34-35}+\dfrac{\sqrt{35}-\sqrt{36}}{335-36}\)

\(A=\dfrac{\sqrt{4}-\sqrt{5}+\sqrt{5}-\sqrt{6}+....+\sqrt{35}-\sqrt{36}}{-1}=\dfrac{\sqrt{4}-\sqrt{36}}{-1}\)

\(A=\sqrt{36}-\sqrt{4}=6-2=4\)

15 tháng 8 2021

mik cảm ơn ạ

 

Bài 1:

a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)

\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)

\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)

\(=\dfrac{5}{2}\sqrt{5}\)

c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)

\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)

Bài 2:

e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)

Ta có: \(\sqrt{6-x}=3x-4\)

\(\Leftrightarrow6-x=\left(3x-4\right)^2\)

\(\Leftrightarrow9x^2-24x+16+6-x=0\)

\(\Leftrightarrow9x^2-25x+22=0\)

\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)

Vậy: Phương trình vô nghiệm

 

28 tháng 8 2018

\(a.A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)

Để : \(A=\dfrac{2}{7}\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{7}\)

\(\Leftrightarrow x+\sqrt{x}-6=0\)

\(\Leftrightarrow x-2\sqrt{x}+3\sqrt{x}-6=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\)

\(\Leftrightarrow x=4\left(TM\right)\)

\(b.A^2=\left(\dfrac{2}{x+\sqrt{x}+1}\right)^2=\dfrac{4}{\left(x+\sqrt{x}+1\right)^2}\left(1\right)\)

\(2A=2.\dfrac{2}{x+\sqrt{x}+1}=\dfrac{4}{x+\sqrt{x}+1}\left(2\right)\)

Mà : \(x+\sqrt{x}+1\le\left(x+\sqrt{x}+1\right)^2\left(3\right)\)

Từ \(\left(1;2;3\right)\Rightarrow2A\ge A^2\)

17 tháng 1 2022

a) 2√6>3√2>√13>2√326

b)1/3√39>1/4√32>1/5√35>1/2√51339

@@@

17 tháng 1 2022

Bạn Tạ Bảo Trân làm sai

22 tháng 6 2023

a)

Có: 

\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)

Vì \(\sqrt{117}>\sqrt{116}\)  nên \(3\sqrt{13}>2\sqrt{29}\)

b)

Có:

\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)

\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)

Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\)  nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)

c)

Có:

\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)

\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)

Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)

d)

Có:

\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)

\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)

lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)

 \(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)

16 tháng 10 2022

b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)

\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)

c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)

\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)

\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)

d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)