1.tính: \(3^{100}-\left(3^{99}+3^{98}+...+3^1+1\right)\)
2. tìm các chữ số x, y: 2014xy chia hết cho 35
3. cho \(A=a^2+b^2+24c^{12}+2014\)
với a, b là hai số nguyên tố lớn hơn 3 và c là một số tự nhiên
chứng minh rằng: A chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt A = 1 + 3 + 32 + .... + 398 + 399
=> 3A = 3 + 32 + .... + 398 + 3100
=> 3A - A = 3100 - 1
=> 2A = 3100 - 1
=> \(A=\frac{3^{100}-1}{2}\)
Nên : 3100 - (1 + 3 + 32 + .... + 398 + 399)
= 3100 - \(\frac{3^{100}-1}{2}\)
= \(\frac{3^{100}.2}{2}-\frac{3^{100}-1}{2}\)
= \(\frac{3^{100}.2-3^{100}+1}{2}\)
= \(\frac{3^{100}+1}{2}\)
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Do A = x183y chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A = x183y
Vì A = x183y chia cho 9 dư 1
→ x183y - 1 chia hết cho 9
→ x183y chia hết cho 9
↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6
Vậy x = 6; y = 1
a)
= 48 + 288 : ( x - 3 )2 = 50
288 : ( x - 3 )2 = 50 - 48
288: ( x - 3 )2= 2
(x - 3 )2= 288 : 2
(x - 3)2= 144
(x - 3)2 = 122
x - 3 = 12
x = 12 + 3 = 15
b) n mũ 2 + 2006 là hợp số
hai câu còn lại ko bt
Hok tốt
^_^
1.
\(B=1+3^1+....+3^{99}\\ \Rightarrow3.B=3+3^2+...+3^{100}\\ \Rightarrow2B=3^{100}-1\\ \Rightarrow B=\dfrac{3^{100}-1}{2}\)
\(\Rightarrow A=3^{100}-B=3^{100}-\dfrac{3^{100}-1}{2}\)
3.
a;b là số nguyên tố lớn hơn 3
=> a;b không chia hết cho 3 và a;b lẻ
a;b không chia hết cho 3 => a^2 ; b^2 chia 3 dư 1
=> A chia hết 3
TT : A chia hết 8
(3;8)=1 => A chia hết 24
bạn làm câu 3 rõ hơn được không?