Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7 (chẳng hạn 333333 chia hết cho 7 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)
TL :
aaa = a . 111
Ta có :
111 = 3 . 37
=> aaa = a . 111 = a . 3 . 37
=> aaa luôn chi hết cho 37
Vậy số có dạng aaa luôn chia hết cho 37
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
abc x abc = abc x 1000 + abc = abc x ( 1000 + 1 )
= abc x 1001 = abc 91 11
Vì 11 chia hết cho 11 nên abc x 91 x 11 chia hết cho 11.
1. aaa = a . 111 = a . 3 . 37 \(⋮\)37
Vậy số có dạng aaa luôn chia hết cho 37
~~~~ có ai xem và cổ vũ cho U ( 23 ) việt Nam không ~~~~
Ta có: ab− ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b) chia hết cho 9 (điều phải chứng minh).
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7
Ta có:
\(\overline{aaaaaa}=a.111111=7a.15873⋮7\)
Do đó:\(\overline{aaaaaa}⋮7\left(dpcm\right)\)