Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)
TL :
aaa = a . 111
Ta có :
111 = 3 . 37
=> aaa = a . 111 = a . 3 . 37
=> aaa luôn chi hết cho 37
Vậy số có dạng aaa luôn chia hết cho 37
Gọi 2 số đã cho là a và b (a,b thuộc N và a phải lớn hơn hoặc bằng b )
Nên: a=9 k1+ r
b=9 k2+r
Ta có: Hiệu a-b = (9 k1+r) - (9 k2 +r)
= 9 k1+r - 9 k2-r
= 9 k1 - 9 k2 + r-r
= 9.k1-9.k2
= 9. (k1+k2) chia hết cho 9
Hay (a-b) chia hết cho 9
Vậy hai số chia hết cho 9 có cùng số dư thì hiệu chúng chia hết cho 9
Nhớ k đúng cho mình nha!
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7
Gọi 5 số tự nhiên liên tiếp đó là a, a+1, a+2, a+3, a+4.
Nếu \(a=5k\Rightarrow a⋮5\)
Nếu \(a=5k+1\Rightarrow a+4=5k+1+4=5k+5⋮5\)
\(\Rightarrow a+4⋮5\)
Nếu \(a=5k+2\Rightarrow a+3=5k+2+3=5k+5⋮5\)
\(\Rightarrow a+3⋮5\)
Nếu \(a=5k+3\Rightarrow a+2=5k+3+2=5k+5⋮5\)
\(\Rightarrow a+2⋮5\)
Nếu \(a=5k+4\Rightarrow a+1=5k+4+1=5k+5⋮5\)
\(\Rightarrow a+1⋮5\)
Vậy trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5.