K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Xét 2003 số có dạng 2004, 20042004, 200420042004, ..., 2004200420042004...2004 (2003 lần số 2004).
TH1: Nếu có 1 số chia hết cho 2003 thì ta có đpcm.
TH2: Nếu không có số nào chia hết cho 2003 thì có ít nhất 2 số có cùng số dư khi chia cho 2003. Gọi 2 số đó là \(a_i=20042004...2004\) (i lần số 2004) và \(a_j=20042004...2004\) (j lần số 2004)

\(\Rightarrow a_i-a_j=2004..200400..000\vdots 2003\) (i-j lần số 2004 và 4j lần số 0)

\(\Leftrightarrow 20042004...2004.10^{4j}\vdots 2003\)

\((10^{4j}, 2003)=1\)

Suy ra ta có đpcm.

13 tháng 11 2016

Xét 2003 số có dạng 2004, 20042004, 200420042004, ..., 2004200420042004...2004 (2003 lần số 2004).
TH1: Nếu có 1 số chia hết cho 2003 thì ta có đpcm.
TH2: Nếu không có số nào chia hết cho 2003 thì có ít nhất 2 số có cùng số dư khi chia cho 2003. Gọi 2 số đó là ai=20042004...2004 (i lần số 2004) và aj=20042004...2004 (j lần số 2004) => ai - aj=2004..200400..000 chia hết cho 2003 ⇒ai−aj=2004..200400..000⋮2003 (i-j lần số 2004 và 4j lần số 0)
<=>20042004...2004.10^4j chia het cho 2003
Mà (104j,2003)=1(104j,2003)=1
Suy ra ta có đpcm. 

21 tháng 3 2017

Bài 2 nè

Xét 2004 số

2004

20042004

...

20042004...2004(2004 số 2004)

Theo nguyên lý Đi-rích-lê,tồn tại 2 số khi chia cho 2003 có cùng số dư.Gọi 2 số đó là m và n

Ta có:20042004...2004-20042004...2004\(⋮\)2003

(m số 2004) (n số 2004)

=>20042004...2004.104n\(⋮\)2003

(m-n số 2004)

mà 104n và 2003 nguyên tố cùng nhau

=>20042004...2004\(⋮\)2003(đpcm)

(m-n số 2004)

30 tháng 10 2017

mn trả lời nhanh hộ mk vs mk tích điểm cho

1 tháng 2 2018

2 đề trên 

có..

mâu thuẫn

25 tháng 3 2015

đề hình như thiếu có bao nhiêu số 2003

15 tháng 1 2017

bạn ơi muốn thế thì phải có 1991 số 2003 nha

19 tháng 9 2021

Giả sử tồn tại a,b∈Za,b∈Z thỏa mãn ycđb

ĐKĐB \(a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}\)

\(\left(a^2+2b^2-2004\right)=\sqrt{2}\left(2003-2ab\right)\)

\(\sqrt{2}=\dfrac{a^2+2b^2-2004}{2003-2ab}\left(1\right)\)

Với a,b nguyên thì \(\dfrac{a^2+2b^2-2004}{2003-2ab}\) là số hữu tỉ. 

Mà √22 là số vô tỉ (đây là bài toán quen thuộc)

Do đó \(\left(1\right)\) vô lý, hay điều giả sử là sai, tức là không tồn tại a,b∈Z thỏa mãn đkđb.

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

Giả sử tồn tại $a,b\in\mathbb{Z}$ thỏa mãn ycđb

ĐKĐB $\Leftrightarrow a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}$

$\Leftrightarrow (a^2+2b^2-2004)=\sqrt{2}(2003-2ab)$

$\Leftrightarrow \sqrt{2}=\frac{a^2+2b^2-2004}{2003-2ab}(*)$

Với $a,b$ nguyên thì $\frac{a^2+2b^2-2004}{2003-2ab}$ là số hữu tỉ. 

Mà $\sqrt{2}$ là số vô tỉ (đây là bài toán quen thuộc)

Do đó $(*)$ vô lý, hay điều giả sử là sai, tức là không tồn tại $a,b\in\mathbb{Z}$ thỏa mãn đkđb.