K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Bài 2 nè

Xét 2004 số

2004

20042004

...

20042004...2004(2004 số 2004)

Theo nguyên lý Đi-rích-lê,tồn tại 2 số khi chia cho 2003 có cùng số dư.Gọi 2 số đó là m và n

Ta có:20042004...2004-20042004...2004\(⋮\)2003

(m số 2004) (n số 2004)

=>20042004...2004.104n\(⋮\)2003

(m-n số 2004)

mà 104n và 2003 nguyên tố cùng nhau

=>20042004...2004\(⋮\)2003(đpcm)

(m-n số 2004)

28 tháng 1 2020

có 

vì : A= 1992 + 19932 +19942 + 19952    ( sau khi tìm số tận cùng của các số )

=) ta có A= .......1 + ........9 + .........6  + ...........5 = ..........1

Mà 1 số chính phương có số tận cùng là 1 

=) A là số chính phương

8 tháng 8 2019

Ta có: \(1992^2\) chia 3 dư 0,1 

          1993^2..........................

            1994^2...........................

\(\Rightarrow N=1992^2+1993^2+1994^2\) chia 3 dư 0

(đpcm)

8 tháng 11 2017

Ê thông ơi hình như đề là cm ko cp chứ , cậu xem lại đề đi nha

7 tháng 4 2017

a)M có

1992 chia hết cho 3=> 19922 chia 3 dư 0

1993 ko chia hết cho 3 => 19932 chia 3 dư 1

1994 ko chia hết cho 3 => 19942 chia 3 dư 1

M chia 3 dư 2 => ko là số chính phương

b) tương tự xét số dư của từng hạng tử trong N với 4

thấy N chia 4 dư 2=> ko là số CP

8 tháng 4 2017

Tại sao câu a) lại xét M có chia cho 3 mà không xét các số khác, còn câu b) sao lại phải xét N chia cho 4 vậy bạn? Khi nào chia số nào?

31 tháng 5 2017

M= 11916149

31 tháng 5 2017

m= 11916149

13 tháng 7 2017

Xét 2003 số có dạng 2004, 20042004, 200420042004, ..., 2004200420042004...2004 (2003 lần số 2004).
TH1: Nếu có 1 số chia hết cho 2003 thì ta có đpcm.
TH2: Nếu không có số nào chia hết cho 2003 thì có ít nhất 2 số có cùng số dư khi chia cho 2003. Gọi 2 số đó là \(a_i=20042004...2004\) (i lần số 2004) và \(a_j=20042004...2004\) (j lần số 2004)

\(\Rightarrow a_i-a_j=2004..200400..000\vdots 2003\) (i-j lần số 2004 và 4j lần số 0)

\(\Leftrightarrow 20042004...2004.10^{4j}\vdots 2003\)

\((10^{4j}, 2003)=1\)

Suy ra ta có đpcm.

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ