Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 1989 số được tạo bởi toàn chữ số 1
1
11
.......
1111...11 (1989 chữ số 1)
Khi lần lượt chia các số này cho 1989 ta sẽ có nhiều nhất 1989 phép chia có dư mà số dư của các phép chia này nằm trong khoảng từ 1 đến 1988. Theo nguyên lý Dirichlet thì sẽ có ít nhất 2 số khi chia cho 1989 có cùng số dư.
Giả sử ta có 2 số là số A có m chữ số 1 và số B có n chữ số 1 khi chia cho 1989 có cùng số dư và giả sử m>n
\(\Rightarrow A-B=C⋮1989\)
\(\Rightarrow C=1111...00\) (có m-n chữ số 1 và n chữ số 0) chia hết cho 1989 (dpcm)
Gọi số n là số lẻ có tận cùng khác 5.
Xét dãy số gồm (n+1) số nguyên sau :
9
99
999
......
99....999
(n+1) chữ số 9
Khi chia cho n thì sẽ có (n+1) số dư
=>Theo ng.lý dinchlet có ít nhất 2 số có cùng số dư .
Gỉa sử : ai = n . q + r o < r < n
:aj = n . k + r i > j ; g , k thuộc N
=>ai - aj = n (g-k)
<=> 99 ... 99 00...0 = ( g-k )
( i - j ) j chữ
chữ số 9 số 0
<=>99 ... 99 . 10j = n ( g - k )
( i - j )
c/số 9
Vì n là số lẻ có tận cùng khác 5 => ( 10j ; n ) = 1
=> 99 ... 99 :. n ( đpcm )
( i - j )
c/số 9
Xét 18 số: 219, 219219,219219219,...,219219219219...219219
|19 cụm 219|
Vì khi chia 1 số cho 17 có 17 số dư mà có 18 số nên theo nguyên lý Đirichlê có ít nhất 2 số có cùng số dư khi chia cho 17=> Hiệu chúng chia hết cho 17
Gọi đó là 219219219219...219 và 219219219219...219
|m cụm 219| |n cụm 219| (m>n)
=> 219219219219...219 - 219219219219...219 chia hết cho 17
|m cụm 219| |n cụm 219|
=> 219219219...219000....0000 chia hết cho 17
|m-n cụm 219| |3n số 0|
=> \(219219219...219.10^{ }\) 3n chia hết cho 17
Mà (103n;17)=1 => 219219219...219 chia hết cho 17
Giả sử có một số chia hết cho 17 và có tận cùng là 219 nên đặt số đó bằng a219. Ta có:
a219 chia hết cho 17
a1000 + 219 chia hết cho 17
Mà 219 chia 17 dư 15
a1000 chia 17 dư 2
Mà 1000 chia 17 dư 14
a chia 17 dư 5
a = 5( tmđk)
Vậy số tìm được là 5129(đpcm)
mn trả lời nhanh hộ mk vs mk tích điểm cho
2 đề trên
có..
mâu thuẫn