Cho 2 tập hợp \(M=\left\{x\in R|x\le4\right\}\)và \(N=[m+1;10)\), với m là tham số. Tìm giá trị của m để M giao N là một đoạn có độ dài bằng 10.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=[-4;4]
B=[-3;2)
\(A\cap B\)=[-3;2)
A\B=[-4;-3)
B\A=\(\varnothing\)
\(A=\left[-3;3\right]\) ; \(B=(-\infty;-1]\cup[1;+\infty)\)
\(\Rightarrow A\cap B=\left[-3;-1\right]\cup\left[-1;3\right]\)
B1: C= { 5;2 }; E= { 5;9}; F= {7;9}; H= { 7;2}
B2:
a) A= {11; 12; 13; 14; 15}
b) B= {10; 11; 12; 13; 14; 15; 16; 18; 19; 20}
c) C= {6;7;8;9;10}
d) D= {10;11;12;13;...;99;100}
e) E= { 2983; 2984; 2985; 2986}
f) F= { 1;2;3;4;5;6;7;8;9 }
g) G= {1;2;3;4}
h) H= { 1;2;3;4;...;99;100}
\(\Leftrightarrow2x^4-10x^3+\left(m+12\right)x^2-4mx-m^2=0\) có 3 nghiệm
\(\Leftrightarrow\left(x^2-2x+m\right)\left(2x^2-6x-m\right)=0\) có 3 nghiệm
Xét 2 pt: \(x^2-2x+m=0\) (1) và \(2x^2-6x-m=0\) (2)
Để pt đã cho có 3 nghiệm thì:
TH1: (1) có 2 nghiệm pb và (2) có nghiệm kép khác 2 nghiệm của (1)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m=0\end{matrix}\right.\) \(\Rightarrow m=-\frac{9}{2}\)
Thay \(m=-\frac{9}{2}\) vào (1) thấy 2 nghiệm của (1) thỏa mãn khác nghiệm của (2)
TH2: (1) có nghiệm kép và (2) có 2 nghiệm pb khác nghiệm của (1)
\(\Leftrightarrow\left\{{}\begin{matrix}1-m=0\\9+2m>0\end{matrix}\right.\) \(\Rightarrow m=1\)
Thay \(m=1\) vào (2) ta cũng thấy thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m>0\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{9}{2}< m< 1\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\)
Gọi \(x_0\) là nghiệm chung của (1) và (2)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-2x_0+m=0\\2x_0^2-6x_0-m=0\end{matrix}\right.\) \(\Rightarrow3x_0^2-8x_0=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=\frac{8}{3}\end{matrix}\right.\)
- Với \(x_0=0\Rightarrow m=0\)
- Với \(x_0=\frac{8}{3}\Rightarrow m=-\frac{16}{9}\)
Vậy \(m=\left\{-\frac{9}{2};1;0;-\frac{16}{9}\right\}\)
Có đúng 1 giá trị nguyên của m là \(m=1\) thỏa mãn thuộc (0;10)
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử