Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2x^3+\left(m-14\right)x^2+\left(2m+6\right)x-3m+9=0\)
\(\Leftrightarrow x^4-2x^3-14x^2+6x+9+m\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x-3\right)+m\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x+m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=0\\x^2-4x+m-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x^2-4x+m-3=0\left(1\right)\end{matrix}\right.\)
a/ Tập X có đúng 4 phần tử khi và chỉ khi (1) có 2 nghiệm pb khác 1 và -3
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(m-3\right)>0\\1^2-4.1+m-3\ne0\\\left(-3\right)^2-4.\left(-3\right)+m-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 7\\m\ne6\\m\ne-18\end{matrix}\right.\)
b/ Do (1) không thể đồng thời có 2 nghiệm \(\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) nên X có 2 phần tử khi:
TH1: \(\left(1\right)\) vô nghiệm \(\Leftrightarrow\Delta'< 0\Leftrightarrow m>7\)
TH2: (1) có nghiệm kép \(x=1\) hoặc \(x=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=0\\\left[{}\begin{matrix}-\frac{b}{2a}=1\\-\frac{b}{2a}=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=7\\\left[{}\begin{matrix}2=1\\2=-3\end{matrix}\right.\end{matrix}\right.\) (ko có m thỏa mãn)
Vậy \(m>7\)
\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)
\(B=\left\{-1;0;1;2;3;4;5\right\}\)
\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)
\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\)
\(x=1\Rightarrow y=1-2+m=m-1\)
\(\Rightarrow C=(m-1;m+3]\subset A\)
\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)
\(\Leftrightarrow2x^4-10x^3+\left(m+12\right)x^2-4mx-m^2=0\) có 3 nghiệm
\(\Leftrightarrow\left(x^2-2x+m\right)\left(2x^2-6x-m\right)=0\) có 3 nghiệm
Xét 2 pt: \(x^2-2x+m=0\) (1) và \(2x^2-6x-m=0\) (2)
Để pt đã cho có 3 nghiệm thì:
TH1: (1) có 2 nghiệm pb và (2) có nghiệm kép khác 2 nghiệm của (1)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m=0\end{matrix}\right.\) \(\Rightarrow m=-\frac{9}{2}\)
Thay \(m=-\frac{9}{2}\) vào (1) thấy 2 nghiệm của (1) thỏa mãn khác nghiệm của (2)
TH2: (1) có nghiệm kép và (2) có 2 nghiệm pb khác nghiệm của (1)
\(\Leftrightarrow\left\{{}\begin{matrix}1-m=0\\9+2m>0\end{matrix}\right.\) \(\Rightarrow m=1\)
Thay \(m=1\) vào (2) ta cũng thấy thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m>0\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{9}{2}< m< 1\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\)
Gọi \(x_0\) là nghiệm chung của (1) và (2)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-2x_0+m=0\\2x_0^2-6x_0-m=0\end{matrix}\right.\) \(\Rightarrow3x_0^2-8x_0=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=\frac{8}{3}\end{matrix}\right.\)
- Với \(x_0=0\Rightarrow m=0\)
- Với \(x_0=\frac{8}{3}\Rightarrow m=-\frac{16}{9}\)
Vậy \(m=\left\{-\frac{9}{2};1;0;-\frac{16}{9}\right\}\)
Có đúng 1 giá trị nguyên của m là \(m=1\) thỏa mãn thuộc (0;10)