K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

a) \(2xy+y=4x+6\)

\(\Rightarrow y\left(2x+1\right)-4x-2=4\)

\(\Rightarrow y\left(2x+1\right)-2\left(2x+1\right)=4\)

\(\Rightarrow\left(y-2\right)\left(2x+1\right)=4\)

y - 2 2 -2 4 1 -4 -1
2x + 1 2 -2 1 4 -1 -4
x 4 0 6 3 -2 1
y 0,5 ( loại ( -1,5( loại ) 0( chọn ) 1,5 ( loại ) -1 ( chọn ) -2,5 ( loại )

Vậy cặp số \(\left(x;y\right)\)\(\left(6;0\right);\left(-2;-1\right)\)

16 tháng 1 2017

@Các phần khác làm tương tự

17 tháng 1 2016

bấm vào chữ Đúng 0 sẽ hiện ra kết quả 

17 tháng 1 2016

ko rảnh để bấm khi chưa có bài làm

 

12 tháng 3 2020

a) 2xy + y + 4x + 2 = 24

y(2x + 1) + 2(2x + 1) = 24

(y + 2)(2x + 1) = 24

=> y + 2 ; 2x + 1 \(\in\)Ư(24) = {\(\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12\pm24\)}

vì x; y \(\in\)Z  và 2x + 1 không chia hết cho 2 nên xét bảng:

2x + 113-1-3
y + 2248-24-8
x01-1-2
y226-26-10

vậy...

2 tháng 8 2021

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

2 tháng 8 2021

29 tháng 3 2022

`Answer:`

undefined

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)

2 tháng 3 2020

1) 2x + 2y - x(x+y)

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2/ 5x2 - 5xy -10x + 10y

= 5x(x - y) - 10(x - y)

= (5x - 10(x - y)

3/ 4x2 + 8xy - 3x - 6y

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

2 tháng 3 2020

1) 2x + 2y - x(x + y) 

= 2(x + y) - x(x + y)

= (2 - x)(x + y)

2) 5x2 - 5xy - 10x + 10y 

= 5x(x - y) - 10(x - y)

= (5x - 10)(x - y)

= 5(x - 2)(x - y)

3) 4x2 + 8xy - 3x - 6y  

= 4x(x + 2y) - 3(x + 2y)

= (4x - 3)(x + 2y)

4) 2x2 + 2y2 - x2z + z - y2z - 2 

= 2(x2 + y2 - z(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2) - (2 - z)

= (2 - z)(x2 + y2)

5) x2 + xy - 5x - 5y

= x(x + y) - 5(x + y)

= (x - 5)(x + y)

6) x(2x - 7) - 4x + 14 

= x(2x - 7) - 2(2x - 7) 

= (x - 2)(2x - 7)

7)x2 - 3x + xy - 3y  

= x(x + y) - 3(x + y)

= (x - 3)(x + y)