Giúp mik bai 2 nka va ca phan i bai 1 nua nka. Mik se cho GP khi ai giai xog 2 bai nay. Thanks mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tập con của tập A gồm n phần tử là 2\(^n\)
Thật vậy, bằng quy nạp ta có :
Với n=0, tập rỗng có 2\(^0\)=1 tập con. .
Với n=1, có 2\(^1\) = 2 tập con là rỗng và chính nó.
Giả sử công thức đúng với n=k. Tức là số tập con của tập hợp gồm k phần tử là 2\(^k\)
Ta phải chứng minh công thức đúng với k+1.
Ngoài 2\(^k\) tập con vốn có, thêm cho mỗi tập cũ phần tử thứ k + 1 thì được một tập con mới. Vậy ta được 2^k tập con mới. Tổng số tập con của tập hợp gồm k + 1 phần tử (tức tổng số tập con của tập gồm 2^k phần tử và tập con mới tạo thành) là : 2^k + 2^k = 2^k . 2 = 2 \(^{k+1}\)
Vậy số tập con của tập A gồm n phần tử là 2\(^n\)
a: AK<AQ
=>K nằm giữa A và Q
=>AK+KQ=AQ
=>KQ=1cm
b: AK và AC là hai tia đối nhau
=>A nằm giữa K và C
mà AK=AC
nen A là trung điểm của KC
c: BK=1,5+3=4,5cm>AQ
hương pháp giải:
Áp dụng tính chất giao hoán và kết hợp của phép cộng để nhóm các số có tổng là số tròn trăm, tròn nghìn, ...
Lời giải chi tiết:
a) 3254 + 146 + 1698 = 3400 + 1698 = 5098
4367 + 199 + 501 = 4367 + (199 + 501) = 4367 + 700 = 5067
4400 + 2148 + 252 = 4400 + (2148 + 252) = 4400 + 2400 = 6800
b) 921 + 898 + 2079 = (921 + 2079) + 898 = 3000 + 898 = 3898
1255 + 436 + 145 = (1255 + 145) + 436 = 1400 + 436 = 1836
467 + 999 + 9533 = (467 + 9533) + 999 = 10 000 + 999 = 10 999
Bài 2 :
Phương pháp giải:
Số tiền cả ba ngày nhận được = số tiền nhận được ngày thứ nhất + số tiền nhận được ngày thứ hai + số tiền nhận được ngày thứ ba.
Lời giải chi tiết:
Cả ba ngày quỹ tiết kiệm nhận được số tiền là:
75 500 000 + 86 950 000 + 14 500 000 = 176 950 000 (đồng)
Đáp số: 176 950 000 đồng.
Quy luật:Số thứ nhất+3=số thứ 2
Số thứ 2+4=số thứ 3
cứ như vậy tiếp dần
=>Số thứ 3+5=số thứ 4=11+5=16
=>Số thứ 4+6=số thứ 5=16+6=22
=>Số thứ 5+7=số thứ 6=22+7=29
Vậy dãy số sẽ là: 4,7,11,16,22,29
ko chắc
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
\(=\frac{1}{x+y+z}\) (theo đề bài)
\(\Rightarrow x+y+z=\frac{1}{2}\) \(\Rightarrow\begin{cases}y+z=\frac{1}{2}-x\\x+z=\frac{1}{2}-y\\x+y=\frac{1}{2}-z\end{cases}\)
Thay vào đề bài ta có:
\(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)
\(\Rightarrow\frac{\frac{3}{2}-x}{x}=\frac{\frac{5}{2}-y}{y}=\frac{\frac{-5}{2}-z}{z}=2\)
\(\Rightarrow\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{5}{2}-y\\2z=\frac{-5}{2}-z\end{cases}\)\(\Rightarrow\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=\frac{-5}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)
i) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-\left(2+6-3\right)}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)
+) \(\frac{x-1}{2}=5\Rightarrow x=11\)
+) \(\frac{y-2}{3}=5\Rightarrow y=17\)
+) \(\frac{z-3}{4}=5\Rightarrow z=23\)
Vậy....