K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thì khi thay x=0 vào (P) thì y=1 nên (P) đi qua (0;1) thôi bạn

19 tháng 2 2021

Em nghĩ nên sửa đề thành Parabol đi qua điểm (3;3) thì bài toán mới giải được ạ

Parabol đi qua điểm (3;3) nên ta có:

\(3=\left(2m-1\right)\cdot3^2\Rightarrow2m-1=\frac{1}{3}\)

\(\Leftrightarrow2m=\frac{4}{3}\Rightarrow m=\frac{2}{3}\)

Khi đó ta được parabol \(y=\frac{x^2}{3}\)

Đường thẳng song song với trục hoành cắt trục tung tại điểm có tung độ là 4 => y = 4

Khi đó \(4=\frac{x^2}{3}\Rightarrow x^2=12\Rightarrow\orbr{\begin{cases}x=2\sqrt{3}\\x=-2\sqrt{3}\end{cases}}\)

G/s A nằm ở phía dương, B ở phía âm đối với trục hoành thì khi đó tọa độ của  A và B là: \(\hept{\begin{cases}A\left(2\sqrt{3};4\right)\\B\left(-2\sqrt{3};4\right)\end{cases}}\)

\(\Rightarrow AB=\left|2\sqrt{3}\right|+\left|-2\sqrt{3}\right|=4\sqrt{3}\)

\(\Rightarrow S_{OAB}=\frac{4\sqrt{3}\cdot4}{2}=8\sqrt{3}\left(dvdt\right)\)

19 tháng 2 2021
5 tháng 12 2017

+ Giao điểm của parabol với trục tung:

Tại x = 0 thì y = a.02 + b.0 + c = c.

Vậy giao điểm của parabol với trục tung là A(0 ; c).

+ Giao điểm của parabol với trục hoành :

Tại y = 0 thì ax2 + bx + c = 0 (*).

Để parabol cắt trục hoành tại hai điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt ⇔ Δ = b2 – 4ac > 0.

Khi Δ > 0 thì phương trình (*) có hai nghiệm là

 Giải bài 7 trang 50 sgk Đại số 10 | Để học tốt Toán 10

Tọa độ hai giao điểm là

 Giải bài 7 trang 50 sgk Đại số 10 | Để học tốt Toán 10

PTHĐGĐ là;

x^2=2x-(m+1)

=>x^2-2x+m+1=0

Δ=(-2)^2-4(m+1)=4-4m-4=-4m

Để phương trình có hai nghiệm phân biệt thì -4m>0

=>m<0

Để (P) cắt (d) tại hai điểm phân biệt nằm về cùng một phía với trục Oy thì m+1>0

=>m>-1

=>-1<m<0

19 tháng 12 2022

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=1\\-\dfrac{b}{2a}=\dfrac{1}{2}\\-\dfrac{b^2-4ac}{4a}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-b^2-4a=3a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-4a^2-4a-3a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a=-\dfrac{7}{4}\\b=\dfrac{7}{2}\end{matrix}\right.\)

27 tháng 5 2020

1. PT hoành độ giao điểm:

x2−(2x−m2+9)=0⇔x2−2x+m2−9=0(∗)

Khi m=1

thì pt trên trở thành: x2−2x−8=0

⇔(x−4)(x+2)=0⇒x=4

hoặc x=−2

Khi x=4⇒y=x2=16

. Giao điểm thứ nhất là (4,16)

Khi x=−2⇒y=x2=4

. Giao điểm thứ hai là (−2,4)

2. (P)

và (d) cắt nhau tại 2 điểm phân biệt ⇔(∗)

có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)

⇔Δ′=1−(m2−9)>0⇔10>m2(1)

Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm x1,x2

trái dấu. Điều này xảy ra khi x1x2<0⇔m2−9<0(2)

Từ (1);(2)

suy ra m2−9<0⇔−3<m<3

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

5 tháng 6 2017

Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).