Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)
Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)
Vậy \(\left(P\right):y=2x^2-x+3\)
+ Giao điểm của parabol với trục tung:
Tại x = 0 thì y = a.02 + b.0 + c = c.
Vậy giao điểm của parabol với trục tung là A(0 ; c).
+ Giao điểm của parabol với trục hoành :
Tại y = 0 thì ax2 + bx + c = 0 (*).
Để parabol cắt trục hoành tại hai điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt ⇔ Δ = b2 – 4ac > 0.
Khi Δ > 0 thì phương trình (*) có hai nghiệm là
Tọa độ hai giao điểm là
Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).
Phương trình hoành độ giao điểm:
\(x^2+2x-m+1=x+1\)
\(\Leftrightarrow x^2+x-m=0\left(1\right)\)
\(\left(d\right),\left(P\right)\) cắt nhau tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt
\(\Leftrightarrow\Delta=4m+1>0\Leftrightarrow m>-\dfrac{1}{4}\)
Phương trình \(\left(1\right)\) có hai nghiệm phân biệt \(x=\dfrac{-1\pm\sqrt{4m+1}}{2}\)
\(x=\dfrac{-1+\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1+\sqrt{4m+1}}{2}\Rightarrow A\left(\dfrac{-1+\sqrt{4m+1}}{2};\dfrac{1+\sqrt{4m+1}}{2}\right)\)
\(x=\dfrac{-1-\sqrt{4m+1}}{2}\Rightarrow y=\dfrac{1-\sqrt{4m+1}}{2}\Rightarrow B\left(\dfrac{-1-\sqrt{4m+1}}{2};\dfrac{1-\sqrt{4m+1}}{2}\right)\)
\(AB=8\Leftrightarrow\sqrt{8m+2}=8\Leftrightarrow m=\dfrac{31}{4}\left(tm\right)\)
2.
a, \(AB=2\sqrt{5},BC=5\sqrt{10},CA=\sqrt{170}\)
\(AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}=\dfrac{65}{2}\Rightarrow AM=\dfrac{\sqrt{130}}{2}\)
b, \(\left\{{}\begin{matrix}x_D-4-2\left(x_D-2\right)+4\left(x_D+3\right)=0\\y_D-3-2\left(y_D-7\right)+4\left(y_D+8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=-4\\y_D=-\dfrac{14}{3}\end{matrix}\right.\)
\(\Rightarrow D\left(-4;-\dfrac{14}{3}\right)\)
c, \(\left\{{}\begin{matrix}\overrightarrow{AA'}=\left(x_{A'}-4;y_{A'}-3\right)\\\overrightarrow{BC}=\left(-5;-15\right)\\\overrightarrow{BA'}=\left(x_{A'}-2;y_{A'}-7\right)\end{matrix}\right.\)
\(AA'\perp BC\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AA'}.\overrightarrow{BC}=0\left(1\right)\\\overrightarrow{BA'}=k\overrightarrow{BC}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-5\left(x_{A'}-4\right)-15\left(y_{A'}-3\right)=0\Leftrightarrow x_{A'}+3y_{A'}=13\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x_{A'}-2=-5k\\y_{A'}-7=-15k\end{matrix}\right.\Leftrightarrow3x_{A'}-y_{A'}=-1\)
\(\left\{{}\begin{matrix}x_{A'}+3y_{A'}=13\\3x_{A'}-y_{A'}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_{A'}=1\\y_{A'}=4\end{matrix}\right.\Rightarrow A'\left(1;4\right)\)
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=1\\-\dfrac{b}{2a}=\dfrac{1}{2}\\-\dfrac{b^2-4ac}{4a}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-b^2-4a=3a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=1\\b=-2a\\-4a^2-4a-3a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a=-\dfrac{7}{4}\\b=\dfrac{7}{2}\end{matrix}\right.\)
Thì khi thay x=0 vào (P) thì y=1 nên (P) đi qua (0;1) thôi bạn