K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

PTHĐGĐ là;

x^2=2x-(m+1)

=>x^2-2x+m+1=0

Δ=(-2)^2-4(m+1)=4-4m-4=-4m

Để phương trình có hai nghiệm phân biệt thì -4m>0

=>m<0

Để (P) cắt (d) tại hai điểm phân biệt nằm về cùng một phía với trục Oy thì m+1>0

=>m>-1

=>-1<m<0

16 tháng 12 2017

Đáp án C

AH
Akai Haruma
Giáo viên
20 tháng 2 2023

Lời giải:

PT hoành độ giao điểm: $mx^2=x-2$

$\Leftrightarrow mx^2-x+2=0(*)$

Để 2 đths cắt nhau tại 2 điểm phân biệt thì pt $(*)$ phải có 2 nghiệm phân biệt

Điều này xảy ra khi \(\left\{\begin{matrix} m\neq 0\\ \Delta=1-8m>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m< \frac{1}{8}\end{matrix}\right.(I)\)

Hoành độ giao điểm khi đó là 2 nghiệm $x_1,x_2$ của pt $(*)$

Áp dụng định lý Viet: $x_1+x_2=\frac{1}{m}; x_1x_2=\frac{2}{m}$

Để 2 điểm phân biệt nằm ở 2 phía của trục tung thì $x_1,x_2$ trái dấu

Tức là $x_1x_2<0\Leftrightarrow\frac{2}{m}<0$

$\Leftrightarrow m<0$

Kết hợp với $(I)$ suy ra $m<0$

 

20 tháng 2 2023

\(Bước 1\) Lập phương trình hoành độ 

Hoành độ giao điểm là nghiệm của pt 

\(x-2=mx^2\\ \Leftrightarrow-mx^2+x-2=0\)

\(Bước2\) Để hai hàm số cắt nhau tại hai điểm phân biệt nằm về hai phía của trục tung => pt có 2 nghiệm trái dấu

\(a\times c< 0\\ \Leftrightarrow\left(-m\right).\left(-2\right)< 0\\ \Leftrightarrow2m< 0\\ \Leftrightarrow m< 0\\ =>B\)

20 tháng 11 2017

Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1

↔ x 2 − (m + 2)x + m + 1 = 0 (1)

(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0

↔ m < −1

Vậy m < −1

Đáp án: A

23 tháng 5 2018

Đáp án B

a: Thay m=3 vào (d), ta được:

y=3x-3+1=3x-2

Tọa độ giao điểm của (P) và (d) là:

\(\left\{{}\begin{matrix}x^2-3x+2=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;1\right);\left(2;4\right)\right\}\)

b: Phương trình hoành độ giao điểm là:

\(x^2-mx+m-1=0\)

Để (P) cắt (d) tại hai điểm về hai phía của trục tung thì m-1<0

hay m<1

c: Để (P) cắt (d) tại hai điểm phân biệt có hoành độ dương thì 

\(\left\{{}\begin{matrix}\left(-m\right)^2-4\left(m-1\right)>0\\m>0\\m-1>0\end{matrix}\right.\Leftrightarrow m>1\)

 

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

NV
7 tháng 7 2021

Pt hoành độ giao điểm:

\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)

d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)

\(\Leftrightarrow m< 1\)