K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 7 2021

\(5x-2y=1\)(1)

Có \(\left(5,2\right)=1\)là ước của \(1\)nên phương trình có vô số nghiệm. 

Thấy \(\left(1,2\right)\)là một nghiệm của (1) nên nghiệm tổng quát của (1) là: 

\(\hept{\begin{cases}x=1+\frac{-2}{1}t=1-2t\\y=2+\frac{5}{1}t=2+5t\end{cases}}\left(t\inℤ\right)\)

\(P=3x+5y=3\left(1-2t\right)+5\left(2+5t\right)=13+19t\)

Dễ thấy \(P\)không có giá trị nhỏ nhất do \(t\inℤ\)

Nếu đổi điều kiện là \(x,y\)là các số tự nhiên. 

Ta có: \(\hept{\begin{cases}x=1+\frac{-2}{1}t=1-2t\\y=2+\frac{5}{1}t=2+5t\end{cases}}\left(t\inℤ\right)\)suy ra \(\hept{\begin{cases}1-2t\ge0\\2+5t\ge0\end{cases}}\Leftrightarrow\frac{-2}{5}\le t\le\frac{1}{2}\)suy ra \(t=0\).

Khi đó \(P=3.1+5.2=13\)

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .

12 tháng 11 2019

Đáp án C.

Ta có: GT

<=> 5x+2y + x + 2y – 3–x–2y = 5xy–1 – 31–xy + xy – 1.

X é t   h à m   s ố   f t = 5 t + t - 3 - t

⇒ f t = 5 t ln 5 + 1 + 3 - t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên  ℝ suy ra

f(x+2y) = f(xy – 1) <=> x+ 2y = xy – 1

⇔ x = 2 y + 1 y - 1 ⇒ T = 2 y + 1 y - 1 + y .

Do x > 0 => y > 1.

Ta có:

T = 2 + y + 3 y - 1 = 3 + y - 1 + 3 y - 1 ≥ 3 + 2 3 .

NV
2 tháng 9 2021

\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)

\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)

3 tháng 9 2021

Cảm ơn nhiều ạ !

26 tháng 4 2018

Đáp án B.

Từ giả thiết, suy ra

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm  f ' ( t ) = 5 t . ln 5 - ln 3 3 t + 1 > 0 ,   ∀ t ∈ ℝ ⇒ hàm số f ( t ) luôn đồng biến trên .

Suy ra

Do y > 0 nên x + 1 x - 2 > 0 ⇔ [ x > 2 x < - 1 . Mà x > 0  nên  x > 2 .

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2 trên 2 ; + ∞ .

Đạo hàm

Lập bảng biến thiên của hàm số trên  2 ; + ∞ , ta thấy min   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3 khi x = 2 + 3  và  x = 1 + 3 .

5 tháng 6 2019