tìm số hữu tỉ x, thỏa mãn:
(2x - 1 ).x >0
giúp mik với mọi người mình đang cần gấp!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^3=\dfrac{8}{125}\)
\(\left(2x-1\right)^3=\pm\left(\dfrac{2}{5}\right)^3\)
\(\text{Vậy }2x-1=\dfrac{2}{5}\)
\(2x\) \(=\dfrac{2}{5}+1=\dfrac{7}{5}\)
\(x\) \(=\dfrac{7}{5}.\dfrac{1}{2}=\dfrac{7}{10}\)
\(\text{hoặc }2x-1=\dfrac{-2}{5}\)
\(2x\) \(=\left(\dfrac{-2}{5}\right)+1=\dfrac{3}{5}\)
\(x\) \(=\dfrac{3}{5}.\dfrac{1}{2}=\dfrac{3}{10}\)
\(\Rightarrow x\in\left\{\dfrac{7}{10};\dfrac{3}{10}\right\}\)
\(\left(2x-1\right)x>0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\2x-1>0\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\2x-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x>\frac{1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow x>\frac{1}{2}\)hoặc \(x< 0\).
\(xy-2x-3y+1=0\) \(\left(\text{*}\right)\)
\(\Leftrightarrow\) \(xy-3y=2x-1\)
\(\Leftrightarrow\) \(\left(x-3\right)y=2x-1\)
\(\Leftrightarrow\) \(y=\frac{2x-1}{x-3}\)
\(\Leftrightarrow\) \(y=\frac{2x-6+5}{x-3}\)
\(\Leftrightarrow\) \(y=2+\frac{5}{x-3}\)
Vì \(y\in Z\) (theo giả thiết) nên \(\frac{5}{x-3}\) phải là số nguyên hay \(5\) phải chia hết cho \(x-3\)
\(\Leftrightarrow\) \(x-3\in\left\{-5;-1;1;5\right\}\)
Khi đó, xét \(x-3\) với \(4\) trường hợp trên, ta có:
\(\text{+) }\) Với \(x-3=-5\) thì \(x=-2\) \(\Rightarrow\) \(y=1\)
\(\text{+) }\) Với \(x-3=-1\) thì \(x=2\) \(\Rightarrow\) \(y=-3\)
\(\text{+) }\) Với \(x-3=1\) thì \(x=4\) \(\Rightarrow\) \(y=7\)
\(\text{+) }\) Với \(x-3=5\) thì \(x=8\) \(\Rightarrow\) \(y=3\)
Vây, nghiệm nguyên của phương trình \(\left(\text{*}\right)\) là \(\left(x;y\right)=\left\{\left(-2;1\right),\left(2;-3\right),\left(4;7\right),\left(8;3\right)\right\}\)
Cho x^2+ax+b=0 với mọi a,b là số hữu tỉ. Tìm a,b khi x= căn2 -1
Giải nhanh dùm mình nha đang cần gấp
Ta có: 1/x là số nghịch đảo của x
Để 1/x là số Nguyên thì x phải là nghịch đảo của một số nguyên
Hay x có dạng 1/a với a là một số nguyên lúc đó 1/x=a
TH1 : \(x>0\)thì \(2x-1>0\)
\(2x>1\Rightarrow x>\frac{1}{2}\left(Tm\right)\)
TH2 : \(x< 0\)thì \(2x-1< 0\)
\(2x< 1\Rightarrow x< \frac{1}{2}\)kết hợp với ĐK \(\Rightarrow x< 0\)