K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

\(F\left(x\right)=\left[\left(x^3\right)^2-2.x^3.\frac{1}{2}+\frac{1}{4}\right]+\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}\)

\(=\left(x^3-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\text{ }\forall x\in R\)\(\mathbb{R}\)

12 tháng 8 2015

 

F(x) = x^6 - x^3 + 1/4 + x^2 - x + 1/4 + 1/2

= (x^3)^2 - 2.x^3.1/2 + (1/2)^2 + x^2 - 2.x.1/2 + (1/2)^2 + 1/2

= (x^3-1/2)^2 + (x-1/2)^2 + 1/2

Vì (x^3-1/2)^2 và (x-1/2)^2 lớn hơn bằng 0 với mọi x.

\(\Rightarrow\)F(x) lớn hơn bằng 1/2 hay F(x) khác 0

\(\Rightarrow\)Đa thức F(x)  vô nghiệm.

6 tháng 4 2019

F(x)=2(x^2+5x+8)

      =2(x^2+2.x.2,5+2,5^2)+3,5

=2(x+2,5)^2+3,5 >=3,5>0

F(x) vô nghiệm

6 tháng 4 2019

good job boy

Với x-1 ta có:

\(f\left(x\right)=a+b+c=0\)

Vậy x 1 nghiệm của đa thức f(x)

22 tháng 4 2016

m.n >0 thì m;n cùng dương hoặc cùng âm

ta có: (x+2)^2 >=0

xét trường hợp m;n cùng dương

m(x+2)^2 >=0 và n > 0=> m(x+2)^2 + n >0 => vô nghiệm 

xét trường hợp m;n cùng âm

m(x+2)^2 <=0 và n<0 => m(x+2)^2 + n <=0 => vô nghiệm

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

\(2x^2+10x+15=0\)

\(\Leftrightarrow2.\left(x^2+5x+\frac{15}{2}\right)=0\Leftrightarrow x^2+5x+\frac{15}{2}=0\)

\(\Leftrightarrow x^2+5x+\frac{25}{4}+\frac{6}{4}=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=-\frac{6}{4}\)

Vậy...

31 tháng 3 2019

\(f\left(x\right)=x^2+x^2+4x+6x+4+9+2\)

           \(=\left(x^2+4x+4\right)+\left(x^2+6x+9\right)+2\)

            \(=\left(x+2\right)^2+\left(x+3\right)^2+2>0\)

Vậy đa thức trên ko có ngiệm