Các bạn giúp mình vớii.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ x>0; x<>1
\(A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-1}{\sqrt{x}}\)
b: A<0
=>x-1<0
=>0<x<1
\(9,PT\Leftrightarrow x-6=3x-7\left(x\ge6\right)\\ \Leftrightarrow x=\dfrac{1}{2}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\\ 10,PT\Leftrightarrow3x-2=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\\ \Leftrightarrow4x^2-7x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{4}\end{matrix}\right.\left(ktm\right)\Leftrightarrow x\in\varnothing\\ 11,PT\Leftrightarrow\sqrt{x^2+x-1}=2-x\left(x\le2\right)\\ \Leftrightarrow x^2+x-1=x^2-4x+4\\ \Leftrightarrow5x=5\Leftrightarrow x=1\left(tm\right)\\ 12,PT\Leftrightarrow\left(\sqrt{20-x}-4\right)+\left(\sqrt{x+5}-3\right)=0\left(5\le x\le20\right)\\ \Leftrightarrow\dfrac{4-x}{\sqrt{20-x}+4}+\dfrac{x-4}{\sqrt{x+5}+3}=0\\ \Leftrightarrow\left(x-4\right)\left(\dfrac{1}{\sqrt{x+5}+3}-\dfrac{1}{\sqrt{20-x}+4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\\dfrac{1}{\sqrt{x+5}+3}=\dfrac{1}{\sqrt{20-x}+4}\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\sqrt{x+5}+3=\sqrt{20-x}+4\\ \Leftrightarrow\left(\sqrt{x+5}-4\right)-\left(\sqrt{20-x}-3\right)=0\\ \Leftrightarrow\dfrac{x-11}{\sqrt{x+5}+4}+\dfrac{x-11}{\sqrt{20-x}+3}=0\\ \Leftrightarrow\left(x-11\right)\left(\dfrac{1}{\sqrt{x+5}+4}+\dfrac{1}{\sqrt{20-x}+3}\right)=0\\ \Leftrightarrow x=11\left(\dfrac{1}{\sqrt{x+5}+4}+\dfrac{1}{\sqrt{20-x}+3}>0\right)\\ \text{Vậy PT có nghiệm }x\in\left\{4;11\right\}\)
\(13,PT\Leftrightarrow\sqrt{x-1}+\sqrt{3x-2}=\sqrt{5x+1}\left(x\ge-\dfrac{1}{5}\right)\\ \Leftrightarrow4x-3+2\sqrt{\left(x-1\right)\left(3x-2\right)}=5x+1\\ \Leftrightarrow x+4=2\sqrt{3x^2-5x+2}\\ \Leftrightarrow x^2+8x+16=12x^2-20x+8\\ \Leftrightarrow11x^2-28x-8=0\\ \Delta'=14^2+8\cdot11=284\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14-2\sqrt{71}}{11}\\x=\dfrac{14+2\sqrt{71}}{11}\end{matrix}\right.\)
\(14,ĐK:x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\)
\(PT\Leftrightarrow2\sqrt{a^2-1+2a}-a=4\\ \Leftrightarrow2\sqrt{a^2+2a-1}=a+4\\ \Leftrightarrow4a^2+8a-4=a^2+8a+16\\ \Leftrightarrow3a^2-20=0\\ \Leftrightarrow a^2=\dfrac{20}{3}\Leftrightarrow x+1=\dfrac{20}{3}\Leftrightarrow x=\dfrac{17}{3}\left(tm\right)\)
\(15,ĐK:-3\le x\le6\)
Đặt \(\sqrt{x+3}+\sqrt{6-x}=a\ge0\)
\(\Leftrightarrow\dfrac{a^2-9}{2}=\sqrt{\left(x+3\right)\left(6-x\right)}\\ PT\Leftrightarrow a-\dfrac{a^2-9}{2}=3\\ \Leftrightarrow2a-a^2+9=6\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=3\left(a\ge0\right)\\ \Leftrightarrow\sqrt{x+3}+\sqrt{6-x}=3\\ \Leftrightarrow\sqrt{x+3}-3+\sqrt{6-x}=0\\ \Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}-\dfrac{x-6}{\sqrt{6-x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\\dfrac{1}{\sqrt{x+3}+3}=\dfrac{1}{\sqrt{6-x}}\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\sqrt{x+3}+3=\sqrt{6-x}\\ \Leftrightarrow\sqrt{x+3}-\left(\sqrt{6-x}-3\right)=0\\ \Leftrightarrow\dfrac{x+3}{\sqrt{x+3}}+\dfrac{x+3}{\sqrt{6-x}+3}=0\\ \Leftrightarrow x=-3\left(\dfrac{1}{\sqrt{x+3}}+\dfrac{1}{\sqrt{6-x}+3}>0\right)\\ \text{Vậy PT có nghiệm }x\in\left\{6;-3\right\}\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;-7\right)\\\overrightarrow{BC}=\left(4;8\right)\\\overrightarrow{AC}=\left(8;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BC}+\overrightarrow{AC}=\left(12,9\right)\)
\(\Rightarrow\overrightarrow{AB}.\left(\overrightarrow{BC}+\overrightarrow{AC}\right)=4.12-7.9=...\)
b. Gọi \(H\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}=\left(x+3;y-5\right)\\\overrightarrow{BH}=\left(x-1;y+2\right)\\\end{matrix}\right.\)
Do \(AH\perp BC\Rightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)
\(\Rightarrow4\left(x+3\right)+8\left(y-5\right)=0\)
\(\Rightarrow x+2y=7\) (1)
Do H thuộc BC \(\Rightarrow\dfrac{x-1}{4}=\dfrac{y+2}{8}\Rightarrow2x-y=4\Rightarrow y=2x-4\)
Thế vào (1) \(\Rightarrow x+2\left(2x-4\right)=7\Rightarrow x=3\Rightarrow y=2\)
\(\Rightarrow H\left(3;2\right)\)
Gọi chiều rộng là x
Chiều dài là 30-x
Theo đề, ta có: (x-2)(36-x)=x(30-x)+16
\(\Leftrightarrow36x-x^2-72+2x=30x-x^2+16\)
=>38x-72=30x+16
=>8x=88
hay x=11
Vậy: Chiều rộng là 11m
Chiều dài là 19m
Bài 1:
a.
$5(x-3)(x-7)-(5x+1)(x-2)=25$
$\Leftrightarrow 5(x^2-10x+21)-(5x^2-9x-2)=25$
$\Leftrightarrow 5x^2-50x+105-5x^2+9x+2=25$
$\Leftrightarrow -41x+107=25$
$\Leftrightarrow 41x=82$
$\Leftrightarrow x=2$
b.
$3(x-7)(x+5)-(x-1)(3x+2)=-13$
$\Leftrightarrow 3(x^2-2x-35)-(3x^2-x-2)=-13$
$\Leftrightarrow 3x^2-6x-105-3x^2+x+2=-13$
$\Leftrightarrow -5x-103=-13$
$\Leftrightarrow -5x=90$
$x=-18$
Bài 2.
a.
$3(1-4x)(x-1)+4(3x+2)(x+3)=38$
$\Leftrightarrow 3(-4x^2+5x+1)+4(3x^2+11x+6)=38$
$\Leftrightarrow 59x+21=38$
$\Leftrightarrow 59x=17$
$\Leftrightarrow x=\frac{17}{59}
b.
$5(2x+3)(x+2)-2(5x-4)(x-1)=75$
$\Leftrightarrow 5(2x^2+7x+6)-2(5x^2-9x+4)=75$
$\Leftrightarrow 53x+22=75$
$\Leftrightarrow x=1$
c.
$2x^2+3(x-1)(x+1)=5x(x+1)$
$\Leftrightarrow 2x^2+3(x^2-1)=5x^2+5x$
$\Leftrightarrow 5x^2-3=5x^2+5x$
$\Leftrightarrow -3=5x$
$\Leftrightarrow x=-\frac{3}{5}$
d.
$(8-5x)(x+2)+4(x-2)(x+1)+2(x-2)(x+2)=0$
$\Leftrightarrow (-5x^2-2x+16)+4(x^2-x-2)+2(x^2-4)=0$
$\Leftrightarrow x^2-6x=0$
$\Leftrightarrow x(x-6)=0$
$\Rightarrow x=0$ hoặc $x=6$