tính xyz
(x-1)^2006 + (2y-1)^2016+/x+2y-z/^2017=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}\ge0\\\left(2y-1\right)^{2016}\ge0\\\left|x+2y-z\right|^{2017}\ge0\end{matrix}\right.\Rightarrow\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}\ge0\)
Mà \(\left(x-1\right)^{2017}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^{2016}=0\\\left(2y-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\\z=2\end{matrix}\right.\)
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
x2 + 2y + 1 = y2 + 2z + 1 = z2 + 2x + 1 = 0
=> x2 + 2y + 1 + y2 + 2z + 1 + z2 + 2x + 1 = 0
=> (x + 1)2 + (y + 1)2 + (z + 1)2 = 0
=> x = y = z = - 1
=> A = (-1)2017 + (-1)2017 + (-1)2017 = -3
a: A+B
=x^2y+xyz+7y^2-25xy-xyz+x^2y-7y^2+xy
=-24xy+2x^y
A-B=x^2y+xyz+7y^2-25xy+xzy-x^2y+7y^2-xy
=2xyz+14y^2-26xy
b: Bậc của A là 3
bậc của B là 3
c: Khi x=-3;y=-1/2;z=0 thì:
A=9*(-1/2)+0+7*(-1/2)^2-25*(-3)*(-1/2)
=-9/2+7/4-75/2
=-42+7/4=-161/4
B=(-3)*(-1)*(-1/2)*0+(-3)^2*(-1/2)-7*1/4+(-3)*(-1/2)
=-9/2-7/4+3/2
=-3-7/4=-19/4
Ta có :
\(\left(x-1\right)^{2006}\ge0\)
\(\left(2y-1\right)^{2016}\ge0\)
\(\left(x+2y-z\right)^{2017}\ge0\)
Mà \(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}\)\(+|x+2y-z|^{2017}\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\|x+2y-z|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\2y=1\\1-1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy ...
Ta có :
\(\left(x-1\right)^{2006}\ge0\)
\(\left(2y-1\right)^{2016}\ge0\)
\(\left|x+2y-z\right|^{2017}\ge0\)
Mà \(\left(x-1\right)^{2006}+\left(2x-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)
Suy ra : \(\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\2y=1\\1+1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy \(x=1\)\(;\)\(y=\frac{1}{2}\) và \(z=2\)
Chúc bạn học tốt ~