K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(\left(x-1\right)^{2006}\ge0\)

\(\left(2y-1\right)^{2016}\ge0\)

\(\left(x+2y-z\right)^{2017}\ge0\)

Mà \(\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}\)\(+|x+2y-z|^{2017}\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\|x+2y-z|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\2y=1\\1-1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)

Vậy ...

3 tháng 4 2018

Ta có : 

\(\left(x-1\right)^{2006}\ge0\)

\(\left(2y-1\right)^{2016}\ge0\)

\(\left|x+2y-z\right|^{2017}\ge0\)

Mà \(\left(x-1\right)^{2006}+\left(2x-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)

Suy ra : \(\hept{\begin{cases}\left(x-1\right)^{2006}=0\\\left(2x-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\2y-1=0\\x+2y-z=0\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\2y=1\\1+1-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=2\end{cases}}}\)

Vậy \(x=1\)\(;\)\(y=\frac{1}{2}\) và \(z=2\)

Chúc bạn học tốt ~ 

22 tháng 3 2019

Ta có

(x -1)^2016 >0; (2y-1)^2016>0;  /x+2y-z/^2017>0

Mà tổng ba số trên bằng 0

=>(x-1)^2016=0 ; (2y-1)^2016=0; /x+2y-z/=0

=>x=1; y=1/2; z= 2

24 tháng 8 2017

\(\left\{{}\begin{matrix}\left(x-1\right)^{2016}\ge0\\\left(2y-1\right)^{2016}\ge0\\\left|x+2y-z\right|^{2017}\ge0\end{matrix}\right.\Rightarrow\left(x-1\right)^{2016}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}\ge0\)

\(\left(x-1\right)^{2017}+\left(2y-1\right)^{2016}+\left|x+2y-z\right|^{2017}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^{2016}=0\\\left(2y-1\right)^{2016}=0\\\left|x+2y-z\right|^{2017}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\\z=2\end{matrix}\right.\)

24 tháng 8 2017

Thanks Nguyễn Huy Tú nhìu!!

12 tháng 2 2019

\(\frac{3x-2y}{2015}=\frac{2x-4x}{2016}=\frac{4y-3z}{2017}\)

\(\Rightarrow\frac{12x-8y}{8060}=\frac{6z-12x}{6048}=\frac{8y-6z}{4034}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{8060+6048+4034}=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\2z-4x=0\\4y-3z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)

\(\Rightarrow x=2k;y=3k;z=4k\)

Thay vào P ta có

\(P=\frac{4k^2-2.2k.3k-16k^2}{4k^2+9k^2+16k^2}=\frac{k^2\left(4-12-16\right)}{k^2\left(4+9+16\right)}=-\frac{24}{29}\)

9 tháng 10 2019

Câu hỏi của Phung Thi Thanh Thao - Toán lớp 7 - Học toán với OnlineMath

Tham khảo tính được x,y,z. Thay vào A