Tính: 4/1.5+4/5.9+...+4/2001.2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=4/1.5+4/5.9+...+4/2001.2005
S =1/1 - 1/5 + 1/5 -1/9 + ...+ 1/2001 - 1/2005
S = 1/1 - 1/2005
S = 2014/2015
\(S=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+..+\frac{2005-2001}{2001.2005}\)
\(=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{2001}-\frac{1}{2005}\right)\)
\(=1+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+...+\left(-\frac{1}{2001}+\frac{1}{2001}\right)-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
$\dfrac{4}{1.4}+\dfrac{5.9}+....+\dfrac{4}{2001.2005}$
$=1+\dfrac15-\dfrac19+....+\dfrac{1}{2001}-\dfrac{1}{2005}$
$=1-\dfrac{1}{2005}=\dfrac{2004}{2005}$
\(\dfrac{4}{1.4}+\dfrac{4}{5.9}+...+\dfrac{4}{2001.2005}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{2001}-\dfrac{1}{2005}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{2005}\)
\(=1+\dfrac{401}{2005}-\dfrac{1}{2005}\)
\(=1+\dfrac{400}{2005}=1+\dfrac{80}{401}=\dfrac{481}{401}\)
Có dạng tổng quát như thế này nhé:
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{k+n}\)
Trong trường hợp này là \(\frac{-4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n+4\right)n}=-\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)
Đáp án là: \(\frac{1}{n+4}-1\)
\(=\frac{2014}{2015}\)
tk mk nha
Ta có :
4/1 . 5 + 4/5 . 9 + ...+ 4/2001 . 2005
= 1 - 1/5 + 1/5 - 1/9 + ...+ 1/2001 - 1/2005
= 1 - 1/2005
= 2004/2005
Tham khảo nha !!!