Cho tam giác ABC có AB=AC=5cm và BC= 6cm,D la trung điểm của BC.
1.Tam giác ABD là tam giác gì?Tính AD
2.Trung điểm BE cắt AD tại G.Tính AG.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ Ta có AB < BC (5cm < 6cm)
=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ABC}< \widehat{A}\)
b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) (đpcm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)
và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)
=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)
=> F là trung điểm AB (đpcm)
d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))
=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)
=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:
\(BG=\sqrt{BD^2+GD^2}\)
=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)
=> \(BG=\sqrt{9+\frac{64}{9}}\)
=> \(BG=\sqrt{\frac{145}{9}}\)
=> BG \(\approx\)4, 01 (cm)
1: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
2: Xét ΔBCD có
BA là đường cao
BA là đường trung tuyến
Do đó: ΔBCD cân tại B
3: Xét ΔBCD có
BA là đường trung tuyến
CE là đường trung tuyến
BA cắt CE tại G
Do đó: G là trọng tâm của ΔBCD
=>AG=1/3BA=1(cm)
Sửa đề: Bỏ D là trung điểm của BC và bỏ luôn góc D vuông
a) Sửa đề: Chứng minh ΔABD=ΔACD
Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC(ΔABC đều)
AD chung
Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: BD=CD(hai cạnh tương ứng)
b) Ta có: AB=BC(ΔABC đều)
mà BC=6cm(gt)
nên AB=6cm
Ta có: BD=CD(cmt)
mà BD+CD=BC(D nằm giữa B và C)
nên \(BD=CD=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=AB^2-BD^2=6^2-3^2=27\)
hay \(AD=3\sqrt{3}cm\)
Vậy: \(AD=3\sqrt{3}cm\)
c) Ta có: ΔABC đều(gt)
nên \(\widehat{C}=60^0\)
Ta có: BD=DC(cmt)
mà D nằm giữa B và C(gt)
nên D là trung điểm của BC
hay \(CD=\dfrac{BC}{2}\)(1)
Ta có: E là trung điểm của AC(gt)
nên \(CE=\dfrac{AC}{2}\)(2)
Ta có: ΔABC đều(gt)
nên BC=AC(3)
Từ (1), (2) và (3) suy ra CE=CD
Xét ΔCED có CE=CD(cmt)
nên ΔCED cân tại C(Định nghĩa tam giác cân)
Xét ΔCED cân tại C có \(\widehat{C}=60^0\)(cmt)
nên ΔCED đều(Dấu hiệu nhận biết tam giác đều)
d) Xét ΔCAB có
D là trung điểm của BC(cmt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)
hay DE//BA(Định lí 2 về đường trung bình của tam giác)
a) Xét ΔAHB và ΔAHC
Ta có: ∠AHB = ∠AHC = 900 (AH⊥BC)
AB = AC ( ΔABC cân tại A)
AH chung
nên ΔAHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có: BH = CH (ΔAHB = ΔAHC)
Mà H ∈ BC
nên H là trung điểm của BC
suy ra BH = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)* 6 = 3cm
Xét ΔAHB vuông tại H (AH⊥BC)
Có: AH2 + BH2 = AB2 (Định lý Py-ta-go)
mà BH = 3cm; AB = 5cm
nên AH2 + 32 = 52
suy ra AH = 4cm
Ta có hai đường trung tuyến BE và CD của ΔABC cắt nhau tại G
nên G là trọng tâm của ΔABC
suy ra AG = \(\frac{2}{3}\)AH
mà AH = 4cm
nên AG = \(\frac{8}{3}\)cm
c) Có ΔABC cân tại A
mà AH là đường cao của ΔABC (AH⊥BC)
nên AH là phân giác của ΔABC
suy ra ∠BAH = ∠CAH
Xét ΔABG và ΔACG
Có AB = AC (ΔABC cân tại A)
∠BAH = ∠CAH (cmt)
AG chung
nên ΔABG = ΔACG (c-g-c)
suy ra ∠ABG = ∠ACG (2 góc tương ứng)