K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

Tại sao phải đặt vấn đề bảo vệ rừng AMAZON?

29 tháng 4 2018

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)

1: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

2: Xét ΔBCD có

BA là đường cao

BA là đường trung tuyến

Do đó: ΔBCD cân tại B

3: Xét ΔBCD có

BA là đường trung tuyến

CE là đường trung tuyến

BA cắt CE tại G

Do đó: G là trọng tâm của ΔBCD 

=>AG=1/3BA=1(cm)

Sửa đề: Bỏ D là trung điểm của BC và bỏ luôn góc D vuông

a) Sửa đề: Chứng minh ΔABD=ΔACD

Xét ΔABD vuông tại D và ΔACD vuông tại D có 

AB=AC(ΔABC đều)

AD chung

Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)

Suy ra: BD=CD(hai cạnh tương ứng)

b) Ta có: AB=BC(ΔABC đều)

mà BC=6cm(gt)

nên AB=6cm

Ta có: BD=CD(cmt)

mà BD+CD=BC(D nằm giữa B và C)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=AB^2-BD^2=6^2-3^2=27\)

hay \(AD=3\sqrt{3}cm\)

Vậy: \(AD=3\sqrt{3}cm\)

c) Ta có: ΔABC đều(gt)

nên \(\widehat{C}=60^0\)

Ta có: BD=DC(cmt)

mà D nằm giữa B và C(gt)

nên D là trung điểm của BC

hay \(CD=\dfrac{BC}{2}\)(1)

Ta có: E là trung điểm của AC(gt)

nên \(CE=\dfrac{AC}{2}\)(2)

Ta có: ΔABC đều(gt)

nên BC=AC(3)

Từ (1), (2) và (3) suy ra CE=CD

Xét ΔCED có CE=CD(cmt)

nên ΔCED cân tại C(Định nghĩa tam giác cân)

Xét ΔCED cân tại C có \(\widehat{C}=60^0\)(cmt)

nên ΔCED đều(Dấu hiệu nhận biết tam giác đều)

d) Xét ΔCAB có 

D là trung điểm của BC(cmt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)

hay DE//BA(Định lí 2 về đường trung bình của tam giác)

9 tháng 5 2018

a) Xét ΔAHB và ΔAHC

Ta có: ∠AHB = ∠AHC = 900 (AH⊥BC)

          AB = AC ( ΔABC cân tại A)

          AH chung

nên ΔAHB = ΔAHC (cạnh huyền - cạnh góc vuông)

b) Ta có: BH = CH (ΔAHB = ΔAHC)

Mà H ∈ BC

nên H là trung điểm của BC

suy ra BH = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)* 6 = 3cm

Xét  ΔAHB vuông tại H (AH⊥BC)

Có: AH2 + BH2 = AB2 (Định lý Py-ta-go)

mà BH = 3cm; AB = 5cm

nên AH2 + 32 = 52

suy ra AH = 4cm

Ta có hai đường trung tuyến BE và CD của ΔABC cắt nhau tại G

nên G là trọng tâm của ΔABC 

suy ra AG = \(\frac{2}{3}\)AH

mà AH = 4cm

nên AG = \(\frac{8}{3}\)cm

c) Có ΔABC cân tại A

mà AH là đường cao của ΔABC (AHBC)

nên AH là phân giác của ΔABC

suy ra BAH = CAH

Xét ΔABG và ΔACG

Có AB = AC (ΔABC cân tại A)

      ∠BAH = CAH (cmt)

       AG chung

nên ΔABG = ΔACG (c-g-c)

suy ra ABG = ACG (2 góc tương ứng)

30 tháng 4 2016

a) áp dụng đ/lý py ta go

=> BC2=AB2+AC2

      BC2 = 32 +62 = 9+36=45

=> BC=45

b) C/m AE=3cm(AE là trung điểm AC; AE=AC:2)

tg ABD = tg AED VÌ AB=AE (vì =3cm),góc BAD=EAD, AD chung

c) VÌ tg ABD=AED => góc B=E

tg BAC=EAM vì AE=BC, Â vuông, góc B=E

=> AM=AC=> tg MAC vuông cân

5 tháng 5 2021

mình giống bài trên nhưng thêm câu d là DC bằng 2.BD giúp mình với