K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 12 2021
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
14 tháng 5 2022
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
Sửa đề: Bỏ D là trung điểm của BC và bỏ luôn góc D vuông
a) Sửa đề: Chứng minh ΔABD=ΔACD
Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC(ΔABC đều)
AD chung
Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: BD=CD(hai cạnh tương ứng)
b) Ta có: AB=BC(ΔABC đều)
mà BC=6cm(gt)
nên AB=6cm
Ta có: BD=CD(cmt)
mà BD+CD=BC(D nằm giữa B và C)
nên \(BD=CD=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=AB^2-BD^2=6^2-3^2=27\)
hay \(AD=3\sqrt{3}cm\)
Vậy: \(AD=3\sqrt{3}cm\)
c) Ta có: ΔABC đều(gt)
nên \(\widehat{C}=60^0\)
Ta có: BD=DC(cmt)
mà D nằm giữa B và C(gt)
nên D là trung điểm của BC
hay \(CD=\dfrac{BC}{2}\)(1)
Ta có: E là trung điểm của AC(gt)
nên \(CE=\dfrac{AC}{2}\)(2)
Ta có: ΔABC đều(gt)
nên BC=AC(3)
Từ (1), (2) và (3) suy ra CE=CD
Xét ΔCED có CE=CD(cmt)
nên ΔCED cân tại C(Định nghĩa tam giác cân)
Xét ΔCED cân tại C có \(\widehat{C}=60^0\)(cmt)
nên ΔCED đều(Dấu hiệu nhận biết tam giác đều)
d) Xét ΔCAB có
D là trung điểm của BC(cmt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)
hay DE//BA(Định lí 2 về đường trung bình của tam giác)