K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Không biết

25 tháng 9 2016

x=100

Ta sẽ có: 1-1+1+1-1+1-1+1=0

25 tháng 9 2016

\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)

\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)

\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)

\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)

Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)

\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)

\(\Rightarrow x-100=0\)

\(\Rightarrow x=100\)

Vậy \(x=100\)

25 tháng 9 2016

x thuoc R

20 tháng 2 2018

xy - x + 2y = 3

=> x(y-1) + 2y - 2 = 3 + 2

=> x(y-1) + 2(y-1) = 5

=> (x+2)(y+1) = 5

=> x + 2 và y + 1 \(\in\)Ư(5) = {-1;5;-5;1}

ta có bảng :

x+2-1-515
y+1-5-151
x-3-7-13
y-6-240
9 tháng 4 2019

\(a,\frac{x+1}{65}+\frac{x+2}{64}=\frac{x+3}{63}+\frac{x+4}{62}\)

\(\Rightarrow\left[\frac{x+1}{65}+1\right]+\left[\frac{x+2}{64}+1\right]=\left[\frac{x+3}{63}+1\right]+\left[\frac{x+4}{62}+1\right]\)

\(\Rightarrow\frac{x+1+65}{65}+\frac{x+2+64}{64}=\frac{x+3+63}{63}+\frac{x+4+62}{62}\)

\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}\)

\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}=0\)

\(\Rightarrow\left[x+66\right]\left[\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\right]=0\)

Mà \(\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\ne0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=0-66=-66\)

Auto làm nốt câu b

9 tháng 4 2019

a,  Cộng cả 2 vế với 2 

Ta có \(\frac{x+1}{64}+\frac{x+2}{63}+2=\frac{x+3}{62}+\frac{x+4}{61}+2\)

\(\left(\frac{x+1}{64}+\frac{64}{64}\right)+\left(\frac{x+2}{63}+\frac{63}{63}\right)=\left(\frac{x+3}{62}+\frac{62}{62}\right)+\left(\frac{x+4}{61}+\frac{61}{61}\right)\)

=>  \(\frac{x+65}{64}+\frac{x+65}{63}=\frac{x+65}{62}+\frac{x+65}{61}\)\(\)

=> \(\frac{x+65}{64}+\frac{x+65}{63}-\frac{x+65}{62}-\frac{x+65}{61}=0\)

=> \(\left(x+65\right)\left(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\right)=0\)

Do \(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\ne0\)=> \(x+65=0\)

=> \(x=-65\)

b ,  Lm tương tự như Câu a

Chúc bn hok tốt

7 tháng 3 2018

Bạn tham khảo nhé 

\(a)\) \(\frac{x-1}{2003}+\frac{x-2}{2002}+\frac{x-3}{2001}-3=0\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2003}-1\right)+\left(\frac{x-2}{2002}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(-3+3\right)=0\)

\(\Leftrightarrow\)\(\frac{x-2004}{2003}+\frac{x-2004}{2002}+\frac{x-2004}{2001}=0\)

\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2003}+\frac{1}{2002}+\frac{1}{2001}\right)=0\)

Vì \(\frac{1}{2003}+\frac{1}{2002}+\frac{1}{2001}\ne0\)

\(\Rightarrow\)\(x-2004=0\)

\(\Rightarrow\)\(x=2004\)

Vậy \(x=2004\)

Chúc bạn học tốt ~

7 tháng 3 2018

\(b)\) \(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}=-4\)

\(\Leftrightarrow\)\(\left(\frac{315-x}{101}+1\right)+\left(\frac{313-x}{103}+1\right)+\left(\frac{311-x}{105}+1\right)+\left(\frac{309-x}{107}+1\right)=-4+4\)

\(\Leftrightarrow\)\(\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)

\(\Leftrightarrow\)\(\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)

Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\ne0\)

\(\Rightarrow\)\(416-x=0\)

\(\Rightarrow\)\(x=416\)

Vậy \(x=416\)

Chúc bạn học tốt ~

x=416 nhé.

10 tháng 3 2020

Cộng 1 vào từng phân số ta sẽ đc

\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{101}+\frac{x+100}{102}+\frac{x+100}{103}\)

\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)=0\)

\(\Rightarrow x=-100\)

10 tháng 3 2020

\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=\frac{x-1}{101}+\frac{x-2}{102}+\frac{x-3}{103}\)

<=> \(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x-1}{101}+1+\frac{x-2}{102}+1+\frac{x-3}{103}+1\)

<=> \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{101}+\frac{x+100}{102}+\frac{x+100}{103}\)

<=> \(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)=0\)

<=> x + 100 = 0 (vì \(\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)\ne0\))

<=> x = -100

29 tháng 3 2015

Ta có:\(y=\frac{101^{102}+1}{101^{102}+1}\)\(\Rightarrow\)\(101y=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)

          \(x=\frac{101^{103}+1}{101^{104}+1}\Rightarrow101x=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)     Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\)nên \(1+\frac{100}{101^{^{103}}+1}>1+\frac{100}{101^{104}+1}\)hay 101y>101x. Suy ra y>x