Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Dễ thấy \(\left(\frac{1}{99}< \frac{1}{98}< \frac{1}{97}< \frac{1}{96}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)\ne0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
Vậy x = -100
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\Rightarrow\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\Rightarrow\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\Rightarrow\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)=0\)
Dễ thấy \(\left(\frac{1}{91}>\frac{1}{93}>\frac{1}{95}>\frac{1}{97}\right)\)nên \(\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)\ne0\)
\(\Rightarrow200-x=0\Rightarrow x=200\)
Vậy x = 200
b, \(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\frac{x+200}{99}+\frac{x+200}{98}=\frac{x+200}{97}+\frac{x+200}{96}\)
\(\frac{x+200}{99}+\frac{x+200}{98}-\frac{x+200}{97}-\frac{x+200}{96}=0\)
\(\left(x+200\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
mà\(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\)
==> x+200=0
<=>x=-200
Vậy nghiệm của phương trình là x=-200
c, \(\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
mà \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
==>200-x=0
<=>x=200
vậy nghiệm của pt là x=200
(x+1)/99+(x+2)/98+(x+3)/97=(x+4)/96+(x+5)/95+(x+6)/94
[(x+1)/99 +1]+[(x+2)/98 +1]+[(x+3)/97 +1]-3=[(x+4)/96 +1]+[(x+5)/95 +1]+[(x+6)/94 +1]-3
[(x+1+99)/99+(x+2+98)/98+(x+3+97)/97]-3=[(x+4+96)/96+(x+5+95)/95+(x+6+94)/94]-3
(x+100)/99+(x+100)/98+(x+100)/97=(x+100)/96+(x+100)/95+(x+100)/94
(x+100)(1/99+1/98+1/97)=(x+100)(1/96+1/95+1/94)
(x+100)(1/99+1/98+1/97)-(x+100)(1/96+1/95+1/94)=0
(x+100)(1/99+1/98+1/97-1/96-1/95-1/94)=0
Ma : 1/99+1/98+1/97-1/96-1/95-1/94 \(\ne\)0
=>x+100=0
=>x=-100
k mk nha khong hieu noi mk nha.
1/3x-1/2=(3/5-4x)15/7
1/3x-1/2=9/7-60/7x
1/3x+60/7x=1/2+9/7
187/21x=25/14
x=75/374
k mk nha ban.
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=\frac{x+4}{96}+\frac{x+5}{95}+\frac{x+6}{94}\)
\(\Leftrightarrow\)\(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x+4}{96}+1+\frac{x+5}{95}+\frac{x+6}{94}+1\)
\(\Leftrightarrow\)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}+\frac{x+100}{94}\)
\(\Leftrightarrow\)(x+100)(\(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\))=0
\(\Leftrightarrow\)x+100=0(vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\ne0\))
\(\Leftrightarrow\)x=-100
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=\frac{x+4}{96}+\frac{x+5}{95}+\frac{x+6}{94}\)
\(\Rightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)+\left(\frac{x+6}{94}+1\right)\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}+\frac{x+100}{94}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}-\frac{x+100}{94}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\right)=0\)
Mà \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}-\frac{1}{94}\ne0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
Vậy \(x=-100\)
a)
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(\Leftrightarrow (x-23)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
Dễ thấy: \(\frac{1}{24}>\frac{1}{26}; \frac{1}{25}>\frac{1}{27}\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\)
$\Rightarrow \frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\neq 0$
Do đó $x-23=0\Rightarrow x=23$
b)
PT \(\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow (x+100)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Dễ thấy: $\frac{1}{98}< \frac{1}{96}; \frac{1}{97}< \frac{1}{95}$
$\Rightarrow \frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}< 0$ hay khác $0$
$\Rightarrow x+100=0\Rightarrow x=-100$
c)
PT \(\Leftrightarrow \frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Leftrightarrow \frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow (x+2005)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Dễ thấy $\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}<0$ hay khác $0$
Do đó $x+2005=0\Rightarrow x=-2005$
d)
PT \(\Leftrightarrow \frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{96}+1=0\)
\(\Leftrightarrow \frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{96}=0\)
\(\Leftrightarrow (300-x)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Dễ thấy \(\frac{1}{99}+\frac{1}{97}+\frac{1}{96}>0\) hay khác $0$
Do đó $300-x=0\Rightarrow x=300$
a, \(\frac{x+1006}{1000}+\frac{x+1007}{999}+\frac{x+1008}{998}+\frac{x+1009}{997}+\frac{x+2022}{4}=0\)
\(\Leftrightarrow\frac{x+1006}{1000}+1+\frac{x+1007}{999}+1+\frac{x+1008}{998}+1+\frac{x+1009}{997}+1+\frac{x+2022}{4}-4=0\)
\(\Leftrightarrow\frac{x+2006}{1000}+\frac{x+2006}{999}+\frac{x+2006}{998}+\frac{x+2006}{997}+\frac{x+2006}{4}=0\)
\(\Leftrightarrow\left(x+2006\right)\left(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+\frac{1}{997}+\frac{1}{4}\right)=0\)
Mà \(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+\frac{1}{997}+\frac{1}{4}\ne0\)
\(\Rightarrow x+2006=0\Leftrightarrow x=-2006\)
Ta có: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+...+\dfrac{x+50}{50}+50=0\)
\(\Leftrightarrow\dfrac{x+1}{99}+1+\dfrac{x+2}{98}+1+...+\dfrac{x+50}{50}+1=0\)
\(\Leftrightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}+...+\dfrac{x+100}{50}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+...+\dfrac{1}{50}\right)=0\)
mà \(\dfrac{1}{99}+\dfrac{1}{98}+...+\dfrac{1}{50}>0\)
nên x+100=0
hay x=-100
Vậy: S={-100}
\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+...+\dfrac{x+50}{50}+50=0\)
\(\Leftrightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)+...+\left(\dfrac{x+50}{50}+1\right)=0\)
\(\Leftrightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}+...+\dfrac{x+100}{50}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+...+\dfrac{1}{50}\right)=0\)
\(\Leftrightarrow x+100=0\) (vì \(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+...+\dfrac{1}{50}>0\) )
\(\Leftrightarrow x=-100\)
Cộng 1 vào từng phân số ta sẽ đc
\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{101}+\frac{x+100}{102}+\frac{x+100}{103}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)=0\)
\(\Rightarrow x=-100\)
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=\frac{x-1}{101}+\frac{x-2}{102}+\frac{x-3}{103}\)
<=> \(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x-1}{101}+1+\frac{x-2}{102}+1+\frac{x-3}{103}+1\)
<=> \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{101}+\frac{x+100}{102}+\frac{x+100}{103}\)
<=> \(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)=0\)
<=> x + 100 = 0 (vì \(\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}\right)\ne0\))
<=> x = -100